NANOPORE SEQUENCING TO RESOLVE KIDD BLOOD GROUP DISCREPANCIES

<u>M Gueuning</u>¹, L Schneider², GA Thun¹, N Trost², S Sigurdardottir², C Engström³, G Rizzi³, Y Merki², K Neuenschwander², C Gassner⁴, BM Frey^{1, 2, 3}, MP Mattle-Greminger^{1*}, S Meyer^{2*}

¹Department of Research and Development, ²Department of Molecular Diagnostics and Cytometry, ³Department of Immunohematology, Blood Transfusion Service Zurich, Schlieren, Switzerland ⁴Institute for Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein

* equal contribution

BLUTSPENDE SRK **Zürich**

www.blutspendezurich.ch

BACKGROUND

- Constant increase in read accuracy of long-read sequencing — clinical diagnostics
- Nanopore sequencing has great potential for resolving complex phenotype/genotype discrepancies observed in routine blood group antigen typing

METHODS

- Routine donor genotyping by MALDI-TOF MS at Blutspende Zurich includes: JK*A/B (c.838G>A), JK*01N.03 (c.582C>G), JK*02N.01/.02 (c.342-1G>A/C)
- Resolving 10 phenotype/genotype discrepancies (Fig. 1)
 - SLC14A1 amplified in two overlapping long-range PCRs (Fig. 2)
 Nanopore sequencing on a MinION (R9.4.1) flow cell
- Classical Sanger sequencing not adequate for:
 detecting structural variants (SVs)
 - phasing novel variants to haplotype background
- Case example: Kidd system (Jk, SLC14A1)
- Sanger sequencing of exons and 'bridge-PCR' of breakpoints for validation

Figure 1. Flowchart of sample analysis.

Figure 2. (a) *SLC14A1* gene showing exons, coding DNA sequence (CDS), newly identified ~5 kb deletion (red), coordinates of long-range PCRs (LR1/LR2), and raw reads mapping coverage of sample s02. (b) Zoom on the novel ~5 kb deletion with breakpoints and primer positions used for 'bridge-PCR'. (c) Long-range PCR products of all samples; red arrows highlight ~5 kb shorter LR2 fragments with novel deletion. (d) 'bridge-PCR' products for the three samples with the novel deletion, and control reactions.

RESULTS & CONCLUSIONS

- 10 unexplained Kidd phenotype/genotype discrepancies among ~12,000 donors (Fig. 1)
- All discrepancies resolved using nanopore sequencing (Fig. 2, Table 1):
 - 5/10: rare known weak and null alleles not included in MALDI-TOF MS assay

Table 1. Summary table of serology, genotyping, and sequencing results for all 10 samples.

Sample	Serology	MALDI-TOF Genotyping	Nanopore Sequencing	
			Haplotype 1	Haplotype 2
Known w	eak and null all	eles		
s01	Jk(a+ ^{weak} b-)	Jk(a+ <mark>b+</mark>)	JK*01W.01	JK*02N.08
s04	Jk(a+b-)	Jk(a+ <mark>b+</mark>)	JK*01	JK*02W.04
s05	Jk(a-b+)	Jk(<mark>a+</mark> b+)	JK*01W.05	JK*02
s06	Jk(a+b-)	Jk(a+ <mark>b+</mark>)	JK*01	JK*02N.09
s08	Jk(a+ ^{weak} b-)	Jk(a+ <mark>b+</mark>)	JK*01W.01	JK*02N.06
Novel nul	I alleles			
s09	Jk(a+b-)	Jk(a+ <mark>b+</mark>)	JK*01	JK*02(G242E)Null
s10	Jk(a-b+)	Jk(<mark>a+</mark> b+)	JK*01(G40D)Null	JK*02
Novel str	uctural variant			
s03	Jk(a-b+)	Jk(<mark>a+</mark> b+)	JK*01(Ex9_10del)*	JK*02
s04	Jk(a-b+)	Jk(a+b+)	JK*01(Ex9_10del)*	JK*02
s07	Jk(a-b+)	Jk(a+b+)	JK*01(Ex9_10del)*	JK*02

- 5/10: novel null alleles
 - SNV-based (n = 2)
 - JK^*A linked ~5 kb deletion (n = 3)
- Nanopore sequencing particularly useful for challenging diagnostics involving hybrid genes, deletions, and duplications
- Structural variants mostly not detectable by Sanger sequencing —> likely more SVs missed so far also in other blood groups
- Established a fast and reliable protocol well adaptable to other blood group systems

*Only detected by Nanopore sequencing. Confirmed by bridge-PCR (Fig. 2d).

