NANOPORE SEQUENCING FINDS NOVEL REGULATORY ABO VARIANT CAUSING MIXED-FIELD AGGLUTINATION IN AB DONOR

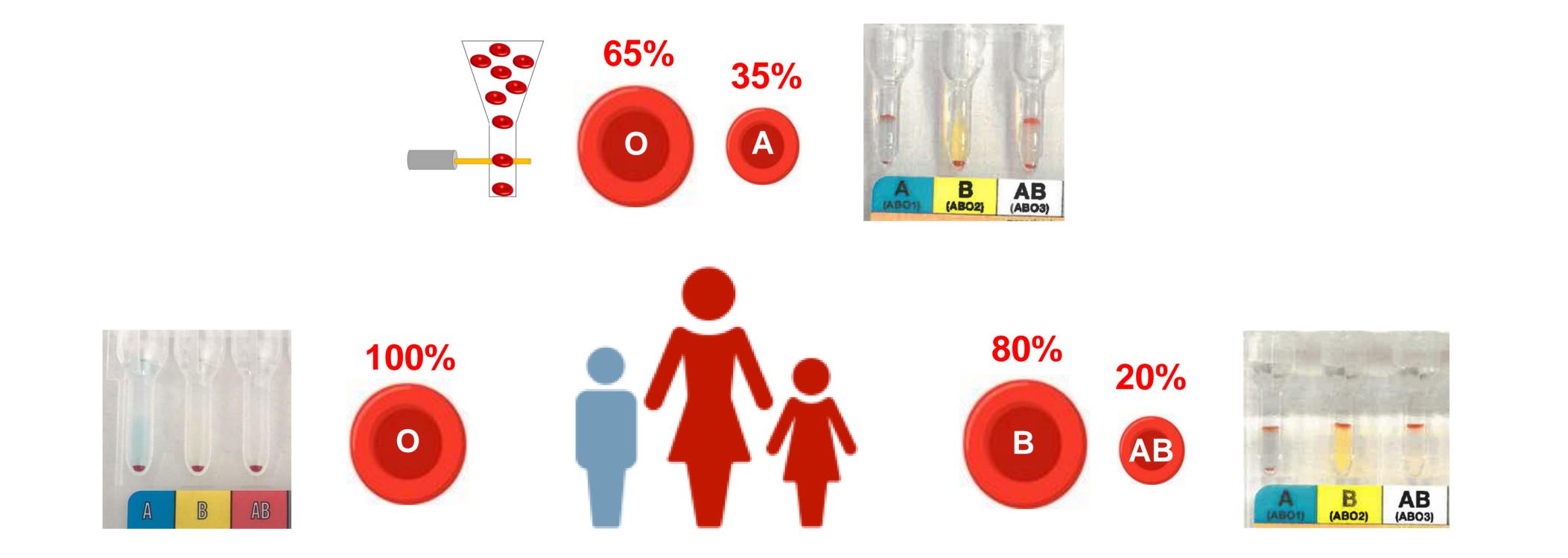
<u>GA Thun</u>¹, M Gueuning¹, S Sigurdardottir², E Meyer², E Gourri^{1,2}, L Schneider², C Engström³, J Sigle⁴, BM Frey^{1,2,3}, S Meyer^{2*}, MP Mattle-Greminger^{1*}

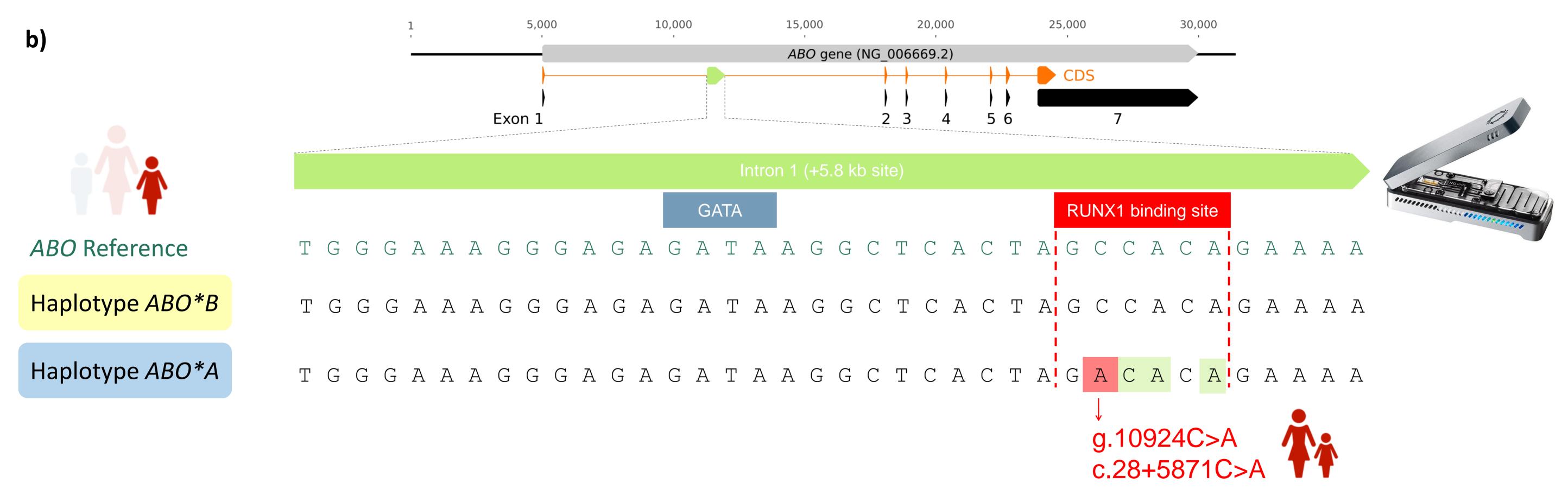
¹Department of Research and Development, ²Department of Molecular Diagnostics and Cytometry, ³Department of Immunohematology, Blood Transfusion Service Zurich, Schlieren, Switzerland ⁴Blood Transfusion Centre Aargau-Solothurn (SRC), Aarau, Switzerland

* equal contribution

www.blutspendezurich.ch

BLUTSPENDE SRK Zürich


Background


a)

- Mixed-field agglutination in ABO phenotyping (e.g. A₃/B₃) often linked to variants in ABO exon 7 and regulatory regions¹⁻³
- Very limited knowledge on genetic diversity in regulatory regions because rarely sequenced

Methods

- ABO serology, including anti-A1 and anti-H specific agglutination (Fig. 1a)
- ABO genotyping using PCR-SSP
- Flow cytometry: A-, B-, and H-antigen expression (Fig. 1a)
- Haplotype-resolved long-read sequencing with great potential to explain cryptic ABO phenotypes
- Proof of concept: nanopore sequencing to resolve a case of mixed-field agglutination in ABO forward typing
- Exclusion of chimerism using digital PCR
- Nanopore sequencing of entire ABO gene
 → 2 overlapping long-range PCR products (~13 kb each)
- Variant confirmation by Sanger sequencing
- Germline vs. somatic origin discriminated by analyzing donor's mother and brother

Fig 1. (a) Serological and flow cytometry results for donor, her mother and brother. **(b)** Alignment of *ABO* reference (NG_006669.2) and nanopore-based haplotype sequences showing novel variant in RUNX1 binding site in intron 1 (+5.8 kb site) on *ABO*A* allele of donor. Same SNV was found on the mother's *ABO*A* allele. Sequence positions of previously reported RUNX1 variants linked to anti-A or anti-B mixed-field agglutination are highlighted in light green^{2, 3}.

Results

- Mixed-field reaction with anti-A in donor genotyped as AB (Fig. 1a)
- Agglutination with anti-H was weak and absent with anti-A1
- Nanopore sequencing: novel variant (g.10924C>A) on the ABO*A allele in a binding motif for the transcription factor Runt-related transcription factor 1 (RUNX1) (Fig. 1b)
- Germline SNV:
 - Mother (genotype: ABO*A | ABO*O.01; serology: mixed-field agglutination)
 - SNV in RUNX1 binding site of ABO*A allele (Fig. 1b) Brother (genotype: ABO*O.01 | ABO*O.01; serology: O)
 - No SNV in RUNX1 binding site

Swisstransfusion Jahreskongress 2022, Bern, Switzerland

Conclusions

- Discovery of a unknown SNV in RUNX1 binding motif causing an A₃ phenotype
- Extends current knowledge of four other variants^{2,3} affecting this motif, all leading to A₃/B₃ or A_m/B_m phenotypes
- Nanopore sequencing of long-range PCRs allowed haplotype generation of the entire ABO gene
 - This simplifies the crucial assessment of known and unknown regulatory regions in cases of complex antigen expression

References

- 1. ABO blood group alleles v1.1 21-OCT-2017 ISBT
- 2. Ying et al. (2018). Vox Sanguinis, 113(6), 594-600
- 3. Hult et al. (2020). Vox Sanguinis, 115(Suppl. 1), 15, 3A-S04-03

