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Multifactorial seroprofiling dissects the
contribution of pre-existing human coronaviruses
responses to SARS-CoV-2 immunity
Irene A. Abela 1,2,9, Chloé Pasin1,2,9, Magdalena Schwarzmüller 1,9, Selina Epp1, Michèle E. Sickmann1,

Merle M. Schanz1, Peter Rusert1, Jacqueline Weber1, Stefan Schmutz 1, Annette Audigé1, Liridona Maliqi1,

Annika Hunziker1, Maria C. Hesselman1, Cyrille R. Niklaus1, Jochen Gottschalk3, Eméry Schindler3,

Alexander Wepf4, Urs Karrer5, Aline Wolfensberger2, Silvana K. Rampini 6, Patrick M. Meyer Sauteur 7,

Christoph Berger7, Michael Huber 1, Jürg Böni 1, Dominique L. Braun1,2, Maddalena Marconato8,

Markus G. Manz 8, Beat M. Frey 3, Huldrych F. Günthard 1,2,10✉, Roger D. Kouyos 1,2,10✉ &

Alexandra Trkola 1,10✉

Determination of SARS-CoV-2 antibody responses in the context of pre-existing immunity to

circulating human coronavirus (HCoV) is critical for understanding protective immunity. Here

we perform a multifactorial analysis of SARS-CoV-2 and HCoV antibody responses in pre-

pandemic (N= 825) and SARS-CoV-2-infected donors (N= 389) using a custom-designed

multiplex ABCORA assay. ABCORA seroprofiling, when combined with computational

modeling, enables accurate definition of SARS-CoV-2 seroconversion and prediction of

neutralization activity, and reveals intriguing interrelations with HCoV immunity. Specifically,

higher HCoV antibody levels in SARS-CoV-2-negative donors suggest that pre-existing HCoV

immunity may provide protection against SARS-CoV-2 acquisition. In those infected, higher

HCoV activity is associated with elevated SARS-CoV-2 responses, indicating cross-

stimulation. Most importantly, HCoV immunity may impact disease severity, as patients

with high HCoV reactivity are less likely to require hospitalization. Collectively, our results

suggest that HCoV immunity may promote rapid development of SARS-CoV-2-specific

immunity, thereby underscoring the importance of exploring cross-protective responses for

comprehensive coronavirus prevention.
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Monitoring the antibody response to SARS-CoV-2 is
critical to define correlates of vaccine protection, dif-
ferences in susceptibility to infection and in disease

severity. The picture of the antibody landscape to SARS-CoV-2
that has thus far evolved is complex. The antibody response to
SARS-CoV-2 is rapid, and triggers strong IgM, IgA and IgG
responses1,2. Both binding and neutralizing responses increase
with disease severity and show in part dependence on demo-
graphic parameters such as age and gender3–5. It remains, how-
ever, unclear which factors are independent drivers of antibody
responses, reflect severe disease courses or are confounded by
other factors including infection length and comorbidities.
Waning IgG binding and neutralizing antibody titers may be
particularly pronounced in individuals with asymptomatic or
mild infection6–9. IgG responses to spike (S) glycoprotein may
persist longer than to nucleocapsid protein (N)7,10,11 and can in
part undergo affinity maturation post virus clearance5. Current
serological analyses predominantly focus on measuring reactivity
to N, the spike glycoprotein S1 subunit and the ACE2 receptor-
binding domain (RBD) in S12,5,12–16. Antibodies to RBD and the
receptor-binding motif within the RBD constitute the main group
of neutralizing antibodies, followed by S1 trimer specific, spike
N-terminal domain, and spike S2 neutralizing antibodies16–22. S1
and RBD binding correlate with neutralizing activity in both
natural and vaccine-induced immune responses providing means
to estimate the potential for neutralization where neutralization
capacity cannot be assessed directly6,8,10. Considering the com-
plex antibody response patterns, possibilities to capture the
dynamics of the SARS-CoV-2 response across diverse Immu-
noglobulin (Ig) classes and SARS-CoV-2 antigens are needed to
ascertain sensitive detection of seroconversion and sero-reversion
and to establish links to protective, neutralizing activity post
infection and post vaccination.

Infections with circulating human coronaviruses (HCoV),
alphacoronavirus (HCoV-229E, HCoV-NL63) and betacor-
onavirus (HCoV-HKU1, HCoV-OC43), are common and con-
tribute considerably to the seasonal respiratory disease burden in
humans23,24. Despite an overall modest sequence homology
between SARS-CoV-2 and circulating HCoVs, several conserved
regions exist and antibody cross-reactivity may occur25–27. While
dismissed in the diagnostic setting as false-positives28, cross-
reactive antibodies may bear biological relevance as suggested for
SARS-CoV-2 S2 cross-neutralizing antibodies29. Uncertainty
remains, however, whether cross-reactive HCoV antibody
responses influence the evolution of SARS-CoV-2 specific
immunity. Positive impact by providing early low affinity mem-
ory responses to build on and mature as well as negative influ-
ences following the antigenic sin principle30 by boosting
nonprotective cross-reactive antibodies on the expense of de novo
responses can be envisaged. Of particular note, cross-reactive
HCoV T helper cell responses were shown to positively impact
SARS-CoV-2 specific immunity31. In view of this, the definition
of pre-existing immunity due to prior infection with HCoVs will
become important in clinical diagnosis and strategies to record
and unveil the complex interdependencies HCoV and SARS-
CoV-2 responses side by side are needed to fill this
knowledge gap.

Here we report on the development of a serological assay that
allows multifactorial seroprofiling of SARS-CoV-2 and HCoV
responses at high diagnostic accuracy. Seroprofiling of a large
cohort of SARS-CoV-2 infected and uninfected individuals pro-
vided key insights into the interdependencies of HCoV and
SARS-CoV-2 antibody responses. The results highlight a potential
protective role of HCoV-specific responses in SARS-CoV-2
acquisition as well as in shaping the SARS-CoV-2 response
upon infection.

Results
Multifactorial seroprofiling defines SARS-CoV-2 specific
responses. Recognizing the need for comprehensive SARS-CoV-2
serological profiling to elucidate central questions in SARS-CoV-2
immunity and its interdependencies with HCoV responses, we
created a bead-based multiplex immunoassay to measure specific
IgG, IgA and IgM responses to SARS-CoV-2 RBD, S1, S2 and N
(Supplementary Fig. 1). The assay records in total 12 SARS-CoV-
2 specific antibody parameters (4 antigens across 3 Ig classes)
with high diagnostic accuracy (see methods, Supplementary
Figs. 1–3 and Supplementary Tables 1, 2) and further includes the
S1 protein of HCoV-HKU1 to screen cross-reactive antibodies
alongside SARS-CoV-2 responses. According to the test’s design
to monitor antibodies to two coronaviruses, we termed the assay
AntiBody CORonavirus Assay (ABCORA) 2.0.

Measurements in ABCORA are expressed as median fluores-
cence intensity (MFI) corrected for background binding (fold
over empty beads, FOE). To distinguish SARS-CoV-2-specific
from cross-reactive antibodies, we defined MFI-FOE thresholds
for each of the 12 SARS-CoV-2 antigen and Ig class combinations
based on plasma antibody reactivity in training cohorts of pre-
pandemic healthy donors (Training I, N= 573), donors with
recent HCoV infection (Training II, N= 75) and donors with
confirmed SARS-CoV-2 infection (Training III, N= 175) (Fig. 1a,
Supplementary Table 3). Positive call criteria were defined to
ascertain that in at least two of the 12 antigen and Ig
combinations the threshold is reached (Supplementary Table 4).
The final threshold and positive call criteria allowed for a
differentiation of partial (only IgM and IgA responses) to full
seroconversion (including IgG responses). In addition, the criteria
denote samples with weak reactivity and/or indeterminate
reactivity (Supplementary Table 5).

Pre-pandemic patients with documented, recent HCoV infec-
tion (Training II, N= 75; OC43 (N= 27), HKU1 (N= 17), NL63
(N= 22), 229E (N= 9)) comprised individuals with different
underlying severe diseases including immune compromised
patients that underwent diagnostic screening for HCoV. HCoV
specific activity was overall lower in this syndromic group but
showed, as expected, enriched HCoV reactivity against the
infecting HCoV (Supplementary Fig. 4). Importantly, we observed
no indication of cross-reactivity with SARS-CoV-2 antigens that
affects the ABCORA readout (Fig. 1a, b). Considering data of all
training cohorts (I–III), ABCORA 2.0 exhibited a high sensitivity
and specificity, reaching 94.29% sensitivity and 99.07% specificity
(Fig. 1c, Supplementary Table 3).

To enable an analysis of cross-reactivities and interdependen-
cies between SARS-CoV-2 and HCoV antibodies, we recorded
reactivity to the S1 unit of HCoV-HKU1 in addition to the SARS-
CoV-2 antigens (Fig. 1a). Owing to the high prevalence of HCoV
antibodies and the ensuing lack of true-negative controls, we set
no thresholds to rate HKU1 reactivity as positive/negative.
Overall, SARS-CoV-2 cross-reactivity was low in pre-pandemic
samples despite notable HKU1 activity (Fig. 1a). Correlation
analysis revealed modest interdependencies of SARS-CoV-2 and
HKU1 plasma antibody reactivity in SARS-CoV-2 positive and
pre-pandemic donors. This predominantly involved IgM
responses, with individuals with recent HCoV infection showing
the highest correlation in IgM for HKU1 and SARS-CoV-2
activity (Supplementary Fig. 5). These data underline that a low
level of cross-reactive activity exists that needs to be respected in
assay design, analysis and validation.

Verification of ABCORA 2.0 on separate validation cohorts of
pre-pandemic healthy adults (N= 252), pre-pandemic children
(N= 169) and individuals with documented SARS-CoV-2
infection (N= 214) (Fig. 1a, b, Supplementary Table 3) confirmed
the validity of the chosen assay criteria. Combining training and
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validation cohorts of SARS-CoV-2 positive individuals (N= 389)
and negative controls (N= 825), ABCORA 2.0 achieved a
sensitivity of 94.60% and a specificity of 99.16% (Fig. 1c).

Of note, when analyzing children and adults in the validation
cohort separately, we observed a slightly lower specificity amongst
children (98.82%) compared to adults (99.60%), raising the
possibility that cross-reactive activity in children may be more
prevalent than in adults. Indeed, pre-pandemic children showed a
higher correlation of IgM HKU1 and SARS-CoV-2 (Supplemen-
tary Fig. 5c), highlighting that interpretation of IgM SARS-CoV-2
activity can be complex.

Computational analyses maximize specificity and sensitivity of
SARS-CoV-2 seroprofiling. To further increase specificity of the
readout, we next explored two computational analysis extensions,
a logistic regression model (ABCORA 2.1) and a random forest
model (ABCORA 2.2). Both analysis strategies were established
on the identical training dataset (Training I–III) used for the
setup of ABCORA 2.0. Instead of obtaining 12 individual
thresholds (one per antigen and Ig class), the computational
models solely estimate the probability of a sample to be positive
by providing a composite result across all 12 measurements and
ranking sera positive or negative (1, 0 classification). For the
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logistic regression ABCORA 2.1, we grouped SARS-CoV-2
binding activities displaying high correlation (Supplementary
Fig. 6a) and included the mean value of their MFI-FOEs in the
model. The random forest model ABCORA 2.2 included all 12
SARS-CoV-2 responses measured and aggregated the result of
1000 classification trees. On the combined training and validation
cohorts of SARS-CoV-2 positive individuals (N= 389) and
negative controls (N= 825), ABCORA 2.2 achieved a striking
sensitivity of 97.43% and a specificity of 99.91% outperforming
both ABCORA 2.0 and 2.1. Of note, positive calling by ABCORA
2.2 was dominated by IgG responses (Supplementary Fig. 6b).

We next explored whether incorporation of HKU1 reactivity
into the random forest model may further improve the calling
specificity and sensitivity. Indeed, a model that included HKU1
S1 as additional variable (ABCORA 2.3) increased sensitivity
from 97.43% in ABCORA 2.2 to 98.20% (Fig. 1c, Supplementary
Table 3) without reduction of the specificity. A sensitivity cross-
validation analysis with randomized training and validation set
confirmed the performance of ABCORA 2.3 (Supplementary
Table 6). Owing to its combined high sensitivity and specificity,
we therefore selected ABCORA 2.3 as the analysis strategy for
rating global SARS-CoV-2 seroconversion.

We next verified the accuracy of ABCORA 2.0 and 2.3 in
defining positive and negative SARS-CoV-2 immune status
utilizing the National Institute for Biological Standards and
Control (NIBSC) Anti SARS-CoV-2 Verification Panel (20/
B770)32. This verification panel for serology assays includes 23
positive and 14 negative serum samples and allows direct
comparison with other test systems32. Both ABCORA versions
showed 100% sensitivity and 100% specificity on the verification
plasma panel and compared favorably to commercial assay
systems (Fig. 1d, Supplementary Table 7). To cross-reference
these external verification results, we next compared the
sensitivity of the ABCORA tests and three commercial serology
test systems on a subset of the SARS-CoV-2 positive training
cohort (cohort III, N= 171). Assays targeting the N protein
(Elecsys® Anti-SARS-CoV-2 (Roche Diagnostics GmbH)), the
RBD region of the S protein (Elecsys® Anti-SARS-CoV-2 S assay
(Roche Diagnostics GmbH)), and the S1 subunit (EUROIMMUN
Anti-SARS-CoV-2 ELISA (IgG)) were included. The results
confirmed the analysis on the international NIBSC 20/B770
plasma panel, with ABCORA 2.0 and ABCORA 2.3 showing the
highest sensitivity amongst the tested assays (Supplementary
Table 8).

We thus conclude that ABCORA 2.0 seroprofiling in
combination with ABCORA 2.3 defines positivity with the
highest specificity and sensitivity. The individual antigen response
evaluation by ABCORA 2.0 defines the stage of seroconversion
status based on individual IgM, IgA and IgG cut-off values and
thereby complements and maximizes the information that can be
obtained by ABCORA 2 seroprofiling.

Predicting SARS-CoV-2 neutralization based on ABCORA
seroprofiling. Determining neutralization activity is critical to
gauge protective immunity. While neutralization can be directly
measured with a range of authentic virus or pseudovirus SARS-
CoV-2 neutralization tests5,22,33, applying direct binding or
competition tests as surrogate for neutralization activity remains
of high interest for diagnostic purposes where cell-based assays
are more difficult to implement33,34. In particular, S1 and RBD
binding and ACE2 competition have been shown to correlate well
with neutralization activity5,8,10,19,33–37. To explore neutralization
predictors based on ABCORA 2.0, we probed in a first step the
capacity of ABCORA to derive quantitative S1 and RBD readouts
in a subset of SARS-CoV-2 positive patients (N= 72). ABCORA

2.0 measurements of serially diluted plasma were conducted to
derive 50% effective concentrations (EC50, expressed as reci-
procal plasma dilution) and area under the curve values (AUC
expressed as MFI) for all 12 SARS-CoV-2 parameters (Fig. 2a, b).
In addition, we quantified SARS-CoV-2 RBD and S1 responses
via the RBD specific mAb CR302238 (Fig. 2c) and the WHO
International Standard Anti-SARS-CoV-2 Immunoglobulin
NIBSC 20/13632 (Supplementary Fig. 7b, Supplementary Data 1).
For this we quantified the respective antibody content of a
positive control SARS-CoV-2 donor pool included in all
ABCORA measurements and expressed the antibody content of
individual plasma samples in relation to it (Fig. 2c, Supplemen-
tary Fig. 7). We then probed which of the ABCORA quantitative
readouts correlated best with each other, the basic readout of
ABCORA 2.0 (MFI-FOE at plasma dilution 1/100), and the
quantitative Roche Elecsys S test (U/ml) (Fig. 2c, Supplementary
Fig. 7). In addition to the individual antigen parameters, we also
considered cumulative response values. These were total spike
reactivity (sum of RBD, S1, S2 across all Ig classes), Ig class spike
reactivity (sum of S1, RBD, S2 for one isotype) and antigen
specific reactivity (sum of all Ig classes for one antigen). We
observed a genuinely good correlation across the diverse spike
parameters tested (Fig. 2d). The notable exception were classical
EC50 values, which showed no to weak correlation across all
parameters including the commercial test. Interestingly, AUC
values, which in contrast to EC50 are a composite measure of
concentration and signal strength, performed well. Of note, we
observed highly variable SARS-CoV-2 antibody dose response
curves, reaching in our cohort individual plateaus over a 4-log
range (Supplementary Fig. 7). These plateaus are respected in the
AUC readout, and are also recorded by the basic MFI-FOE
ABCORA readout at 1/100 plasma dilution, but are not con-
sidered in EC50 determinations. Indeed the basic MFI-FOE
showed a high correlation with the quantitative readouts across
the tested variables including the quantitative commercial Roche
Elecsys S test.

Based on these results, we concluded that the MFI-FOE
readout solely at the 1/100 plasma dilution provides a highly
reliable estimate for the S1 and RBD antibody content in plasma
that can be used as a proxy for quantification without the need to
titrate samples. We therefore employed the basic MFI-FOE in a
next step to define neutralization predictors.

Neutralization activity to Wuhan-Hu-1 in SARS-CoV-2
positive individuals (N= 467) using an established SARS-CoV-
2 pseudovirus neutralization test5,22,33 revealed a broad range of
50% neutralizing titers (NT50) (post positive RT-PCR Fig. 3a
(N= 369), post onset of symptoms, Supplementary Fig. 8a
(N= 333)), in line with previous findings5,8. Early in infection
(within 30 days of positive RT-PCR) neutralization titers were
significantly higher (p < 0.001) and correlated better with binding
parameters. As expected, IgG responses to spike antigens showed
the highest correlation with neutralization activity (Fig. 3b,
Supplementary Figs. 8, 9). We next grouped patients based on the
population into high (NT50 > 250, N= 332) and no or low
neutralizers (NT50 < 250, N= 135)39 (Fig. 4a) and compared the
prediction ability of six different classification models to assign
individuals based on their ABCORA 2.0 binding patterns to these
groups. Univariable logistic regression (ULR) models included
only one variable: either the mean of MFI-FOE S1 reactivities
(ULR-S1), or the mean of MFI-FOE RBD reactivities (ULR-
RBD). A multivariable logistic regression (MLR) included both S1
and RBD mean reactivities. The additional models included all 12
antigen reactivities measured in ABCORA and comprised a
random forest approach and two MLR strategies based on
principle component analysis (PCA, 2 and 4 first axis). Models
were compared based on AUC and the BIC (Bayesian
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information criterion40) by cross validation (Fig. 4b, c). All
models performed similarly, with the univariable model based on
the mean of S1 reactivities (ULR-S1) yielding the best BIC value.
Receiver operating curve (ROC) analysis based on ULR-S1
showed a good capacity in predicting neutralization status
yielding AUC 0.90 (N= 467, Fig. 4d). Exploring different cutoffs
to balance sensitivity and specificity keeping both above 80%, we

chose to assign samples to the high neutralizers group if its
predicted probability was above 70%. This corresponds to an 83%
specificity in correctly assigning non–neutralizers and 80%
sensitivity in assigning neutralizers (Fig. 4d, e). To increase the
utility of the ULR-S1 prediction model for clinical diagnostics, we
devised a modified neutralization prediction model ULR-S1-SOC
based on the SOC values reported for ABCORA 2.0. At 70%
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predicted probability, ULR-S1-SOC delivers neutralization pre-
diction at similar sensitivity (81%) and specificity (81%) by
examining if the composite S1 SOC value (sum of S1 SOC values
for IgG, IgA and IgM) is below or above 9.7 (Fig. 4f).
Correspondingly, a S1 SOC value above 17.3 corresponds to
sensitivity 67% and specificity 94%. Of note, the interrelations
between neutralization and S1 levels were equally apparent when
we probed a lower cut-off of neutralization (NT50 < 100)
(Supplementary Fig. 10, Supplementary Table 9). We therefore
conclude that the basic SOC readout in ABCORA 2.0 can deliver
a reliable prediction of high neutralization activity.

Resolution of temporal antibody dynamics by ABCORA ser-
oprofiling. Cross-sectional analysis of antibody reactivity post
SARS-CoV-2 diagnosis by RT-PCR (N= 369) and post onset of
symptoms (N= 333) underlined the capacity of ABCORA ser-
oprofiling to dissect onset, peak and waning of SARS-CoV-2
antibody responses (Fig. 5a, b, Supplementary Fig. 11). In indi-
viduals with known date of first SARS-CoV-2 RT-PCR diagnosis
or onset of symptoms, ABCORA 2.3 detected early seroconver-
sion in 98% (48 of 49) and 100% (9 of 9) of individuals within
7 days post RT-PCR and onset of symptoms, respectively. Besides
IgM and IgA reactivity, IgG responses were readily detectable in
ABCORA 2.0 after a few days of infection (Supplementary
Fig. 11a).

Longitudinal assessment of a cohort of convalescent patients
up to 11 months post infection (251 measurements on 120
patients) highlighted the temporal dynamics of SARS-CoV-2
binding antibodies. We estimated the decay of binding reactivity
employing a power law mixed model and identified a significant
reduction in RBD, S1, and N in all Ig subtypes (Fig. 5b) with half-
lives ranging from 67 to 404 days, with IgG N titers decaying the
fastest, in line with previous reports10. Half-lives of the
neutralization relevant IgG responses to RBD and S1 where 125
and 404 days, respectively. Intriguingly, the kinetics of neutraliz-
ing antibodies did not mirror the decay rates observed for binding
antibodies. Neutralization activity decreased overall at a slower
rate, with a half-life of 991 days (Fig. 5c). This was in part due to a
mixed reactivity pattern with some individuals showing an
increase in neutralization activity post positive SARS-CoV-2 RT-
PCR5, while neutralization activity in others rapidly decayed
(Supplementary Fig. 11c).

Effects of HCoV immunity on SARS-CoV-2 acquisition. To
enable an investigation of interdependencies between pre-existing
immunity to HCoV and SARS-CoV-2 infection, we expanded the
ABCORA bead antigen array to include S1 proteins of all four
circulating HCoVs (HCoV-NL63, HCoV-229E, HCoV-HKU1,
HCoV-OC43) (Supplementary Fig. 12a). According to its capa-
city to monitor antibodies to five coronaviruses we termed the
assay ABCORA 5.0 and trained and validated it on the same
cohorts as ABCORA 2.0 (Fig. 1). To allow direct comparison with
ABCORA 2.0 and use of the neutralization prediction models, we

used the threshold-/SOC-based analysis settings of ABCORA 2.0
also for ABCORA 5.0. Based on ABCORA 5.0 measurements of
training cohorts I–III, we devised two random forest-based ana-
lysis models. ABCORA 5.4 included solely the 12 SARS-CoV-2
parameters, ABCORA 5.5 included in addition the S1 HCoV
measurements adding up to 24 parameters in total. In analogy to
ABCORA 2.3, incorporation of HCoV reactivity into the model
was advantageous. ABCORA 5.5 provided the highest sensitivity
and specificity amongst the analysis algorithms probed ABCORA
5.0 (Supplementary Fig. 12b, Supplementary Table 10).

Interdependencies between antibody reactivity to the four
HCoVs and SARS-CoV-2 mirrored what we previously observed
for HKU1 with a particular high correlation of IgM reactivity of
SARS-CoV-2 and HCoVs in pre-pandemic individuals, particu-
larly in those with recent HCoV infection (Supplementary
Fig. 13). HCoV infections are frequent but subject to seasonality
and prevalence of individual HCoV infections fluctuates41,42. In
line with this, the prevalence of HCoV responses measured by
ABCORA 5.0 in local blood donors in January 2019 (N= 285),
May 2019 (N= 288), and January 2020 (N= 252) varied
considerably (Fig. 6). To enable a time-controlled comparison
of HCoV reactivity between SARS-CoV-2-infected and healthy
donors, we screened blood donors from May 2020 (N= 672),
when SARS-CoV-2 prevalence was estimated below 2% in Zurich,
Switzerland43, by ABCORA 2.0/5.0 and excluded all samples with
SARS-CoV-2 reactivity. The residual May 2020 cohort (N= 653)
formed a pandemic, healthy donor control group. Interestingly,
HCoV reactivity patterns in 2019 and 2020 differed substantially
as assessed by one-way ANOVA, with January 2020 showing the
comparatively lowest and May 2020 the highest IgA and IgG
reactivity, which may indicate a later onset of an HCoV epidemic
in 2020 compared to 2019 (t-tests of May 2020 versus other
groups shown in Fig. 6).

Most intriguingly, a time-matched analysis comparing May
2020 healthy donors with SARS-CoV-2-positive patients sampled
in April, May and June 2020 (N= 65) revealed significantly lower
HCoV reactivity in SARS-CoV-2 positive patients (Fig. 7a). This
pattern was also evident when we extended the analysis to include
the full cohort of SARS-CoV-2 infected individuals measured
with ABCORA 5.0 (N= 389, sampled from March 2020 to
February 2021, Supplementary Fig. 14). Overall, these results
indicated that pre-existing immune responses to HCoVs may to a
certain degree protect against SARS-CoV-2 infection.

Effects of HCoV immunity in SARS-CoV-2 infection. To
explore interdependencies with HCoV immunity further, we next
investigated whether HCoV responses are linked to the evolution
of SARS-CoV-2 antibodies. To this end, we analyzed antibody
responses in plasma of 204 individuals sampled within 60 days
post SARS-CoV-2 diagnosis using a linear regression model
adjusted for age, gender, time since positive RT-PCR and HCoV
reactivity. To stratify HCoV reactivity into high and low HCoV
activity, median logMFI-FOE were defined for each HCoV and
antibody class. LogMFI-FOE higher than the corresponding

Fig. 2 Quantification of SARS-CoV-2 specific antibody responses. a–c Distribution of (a) 50% effective concentrations (EC50; expressed as reciprocal
plasma dilution) and (b) area under the curve values (AUC; expressed as MFI) of titrated plasma from SARS-CoV-2 positive adults (N= 72) measured
with ABCORA 2.0. c Titrated SARS-CoV-2 RBD and S1 responses were quantified using the RBD specific monoclonal antibody CR3022 (produced as IgG,
IgA and IgM; expressed as ng/ml) as external standard. See Supplementary Fig. 7 for additional quantification with the WHO International Standard Anti-
SARS-CoV-2 Immunoglobulin. d Spearman correlation matrix assessing agreement between ABCORA 2.0 based quantification readouts (EC50, AUC, RBD
Ab standardized), the basic MFI-FOE measured at 1/100 plasma dilution (log), indicated summed logMFI-FOE values (1/100 dilution), and Roche Elecsys
Anti-SARS-CoV-2 (S) assay results (U/ml). Nonsignificant correlations are left blank. Levels of significance are assessed by a two-sided test on the
asymptotic t approximation of Spearman’s rank correlation, and corrected by the Bonferroni method for multiple testing (p < 0.05/780). Color shading
denotes correlation coefficient.
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median for at least three HCoVs (HKU1, OC43, NL63 or 229E)
in a specific Ig class were ranked as having high HCoV activity
within this class. First, only reactivities among the same antibody
class were explored in the model (i.e., HCoV IgG high on SARS-
CoV-2 IgGs). We observed exceptionally strong inter-
dependencies for IgA and IgM responses to SARS-CoV-2, which

all were significantly higher in individuals with high HCoV
reactivity (Fig. 7b). This strongly suggests that pre-existing HCoV
immunity may provide an advantage in mounting SARS-CoV-2
responses. Interdependencies between HCoV IgG and SARS-
CoV-2 specific IgG were only observed for the S2 response.
Intriguingly, supporting this finding, HCoV S2 helper responses
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were recently found to boost SARS-CoV-2 immunity, in parti-
cular S2 antibody activity31. To explore if SARS-CoV-2 IgG may
build on recent HCoV IgA and IgM responses we next probed
whether HCoV IgM and IgA are linked to elevated SARS-CoV-2
specific IgG levels. While no effect was evident for IgM, we
observed a significant association of high HCoV IgA activity on
all four measured SARS-CoV-2 responses (Fig. 7c, d). This
strongly suggests that recent HCoV infection has a beneficial
effect on mounting SARS-CoV-2 antibody responses.

In a next analysis, we probed if pre-existing HCoV immunity
has an impact on disease severity in COVID-19. To this end, we
probed HCoV immunity in 80 hospitalized and nonhospitalized
individuals infected for less than 30 days (Fig. 8a). Controlling for
age and gender, we found that individuals with high pre-existing
HCoV reactivity had significantly lower odds to require
hospitalization (logistic regression OR= 0.16, 95% CI (0.04,
0.67), Fig. 8b, Supplementary Fig. 15). A further stratification of
patients by whether they required treatment at an ICU showed a
lowered likelihood that patients with high HCoV response rates
required hospitalization with intensive care (ordinal regression
OR= 0.36, 95% CI (0.13, 0.96), Fig. 8b, Supplementary Fig. 15).
Thus, individuals with high HCoV levels had a 64% lowered odds
of requiring hospitalization according to ordinal rank regression
analysis comparing hospitalized in regular wards, in ICU and
nonhospitalized individuals (Fig. 8a, b). Collectively, these
observations strongly suggest a cross-protective effect of HCoV
immunity on shaping the immune defense against SARS-CoV-2.

Discussion
Definition of SARS-CoV-2 immunity post vaccination and
infection is of immediate importance44–46. Deciphering antibody
correlates of SARS-CoV-2 protection and monitoring vaccine
responsiveness are challenging tasks ahead. The magnitude and
longevity of protective antibody responses to natural infection
and of different vaccines need to be examined to understand
parameters that shape protective responses and guide decisions
on revaccination in nonresponders and immunization against
novel arising SARS-CoV-2 variants47. Likewise, creating means to
serologically distinguish between de novo infection, reinfection,
and vaccine responses, their durability and failures will remain
critical for clinical diagnosis.

Here we demonstrate the high utility of multi-parameter ser-
oprofiling in addressing key issues in defining SARS-CoV-2
immunity. Simultaneous detection of antibody responses to a
range of SARS-CoV-2 antigens and different Ig classes with
ABCORA seroprofiling provided a comprehensive picture of
SARS-CoV-2 serologic status in a single examination, which can
be useful for clinical diagnosis to determine the presence of
reinfection, define reinfection, and respond to vaccination.
Computational modeling also allowed predicting plasma neu-
tralization capacity from ABCORA results, enabling a compre-
hensive assessment of SARS-CoV-2 antibody dynamics and their
interplay with HCoV responses. We studied two ABCORA assay

versions that both measured HCoV reactivity alongside the 12
SARS-CoV-2 parameters. ABCORA 2 included the S1 antigen of
HKU1. ABCORA 5 included S1 of all four circulating HCoVs.
Notably, computational models that included the HCoV mea-
surements allowed a higher precision in determining SARS-CoV-
2 seropositivity, highlighting interdependencies between HCoV
and SARS-CoV-2 responses that need to be resolved.

Recording reactivity against all four HCoVs in SARS-CoV-2
uninfected and infected individuals we observed intriguing
associations. Uninfected individuals displayed higher HCoV
reactivity compared to infected individuals suggesting a con-
tribution of HCoV immunity to early defense against SARS-CoV-
2. HCoV immunity may also have positive effects in SARS-CoV-2
infection. In agreement with other reports, we noted a cross-
feeding of SARS-CoV-2 and HCoV responses in SARS-CoV-2
infection31,48 with individuals with high HCoV reactivity devel-
oping higher SARS-CoV-2 antibody levels. Most notably, pre-
existing HCoV immunity had an impact on disease severity in
our cohort. SARS-CoV-2 infected individuals with low HCoV
reactivity had a higher likelihood of requiring hospitalization.

While our study solely measured antibody responses, a
potential protective effect of HCoV immunity against SARS-
CoV-2 acquisition should not be viewed restricted to antibody
activity. Antibodies and cellular immunity may both be relevant
and act in concert31,49–51. Alternatively, antibody responses
measured in the present study may solely document recent HCoV
infection and deliver a surrogate measurement of other protective
HCoV responses. The link between higher HCoV and SARS-
CoV-2 reactivity in infected individuals is particularly intriguing.
Strongest effects were seen for IgM and IgA HCoV responses,
suggesting that recent HCoV immunity provides an early boost to
SARS-CoV-2 antibody development. Whether this is due to
cross-reactive B cell responses on which the SARS-CoV-2
immunity builds on and matures or whether cross-reactive T
helper activities play a dominant role as suggested31 will be
important to resolve in forth-coming studies. The exact role and
timing of HCoV responses influencing SARS-CoV-2 antibody
responses also remain to be defined. Early low-affinity HCoV
responses may have a positive impact on the development of
SARS-CoV-2 immunity by forming an immune memory on
which to build, whereas amplification of non-protective cross-
reactive HCoV antibodies according to the antigenic sin principle
may have negative effects30.

Although association studies such as ours cannot formally
define causality, the implications of our findings are evident: Prior
immunity to HCoV may protect to some extent against SARS-
CoV-2 acquisition, may provide a boost to the development of
SARS-CoV-2 specific immunity and with this lower the risk for
severe hospitalization. A modest protective effect by HCoV
immunity would be a plausible explanation for the high pro-
portion of asymptomatic and mild SARS-CoV-2 infections52,53.
Even more intriguing are future perspectives. As others and we
have shown, SARS-CoV-2 and HCoV immunity to infection is

Fig. 3 Association of binding and neutralization activity in early and late infection. a 50% Neutralization titers (NT50) titers against Wuhan-Hu-1
pseudotype in patients with known positive SARS-CoV-2 RT-PCR date (N= 369). Patients were stratified according to time since first diagnosis to
investigate early (less than 30 days post RT-PCR, lavender) and late (more than 30 days post RT-PCR, turquoise) neutralization responses. Difference
between these two groups was assessed with a linear mixed model with time since RT-PCR (binary variable early/late) as fixed effect and individual as
random effect and using Satterthwaite approximation for a two-sided t-test on the parameter associated with time since RT-PCR. Boxplots represent the
following: median with the middle line, upper and lower quartiles with the box limits, 1.5x interquartile ranges with the whiskers. b Linear regression
analysis to define association between neutralization (reciprocal NT50) and antibody binding (MFI-FOE). Black lines indicate linear regression predictions
and gray shaded areas correspond to the 95% confidence intervals. Results depict early (lavender), late (turquoise) and full cohort (black). n.s. denotes
nonsignificant results. Levels of significance are assessed by a two-sided test on the asymptotic t approximation of Spearman’s rank correlation, and
corrected by the Bonferroni method for multiple testing (p < 0.05/1200, see Supplementary Figs. 8b and 9).
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often not long-lasting (Fig. 5, Supplementary Fig. 11)5,54, a lim-
itation that SARS-CoV-2 vaccines hope to overcome. Should
SARS-CoV-2 responses in turn provide a degree of defense
against HCoV infection, broad protection against coronaviruses
may be in reach.

Methods
Human specimen. Serum and plasma samples collected pre and post emergence of
SARS-CoV-2 in Switzerland (pre and post February 2020, respectively) were
included. No patient enrollment was conducted for the present study. All experi-
ments involving samples from human donors were conducted with the approval of
the responsible local ethics committee (Kantonale Ethikkommission) Zurich,
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Fig. 4 Predicting neutralization capacity as a function of binding activity. a SARS-CoV-2 positive donors (N= 467) were stratified into high neutralizers
(NT50 > 250, N= 332; blue) and no/low neutralizers (NT50 < 250, N= 135; gray), based on their neutralization activity against Wuhan-Hu-1. b, c
Comparison of the prediction ability of six different classification models using 100 cross-validation sets (divided as 80% for training and 20% for
validation). b Comparison of models by area under the curve (AUC). Each dot corresponds to one cross-validation set. c Bayesian information criterion
(BIC) of the five models based on logistic regression. The different models are: Univariable logistic regressions (ULR). ULR-RBD: mean of MFI-FOE RBD.
ULR-S1: mean of MFI-FOE S1. Multivariable logistic regression (MLR). MLR-S1, RBD: mean of S1 reactivity and mean of RBD reactivity. MLR-PCA2 and MLR-
PCA4: MLR of 2 and 4 first axis of PCA analysis, respectively. PCA was based on all 12 SARS-CoV-2 antibody reactivities measured by ABCORA 2.0.
Random forest (RF) including all antibody reactivities measured by ABCORA 2.0. Boxplots represent the following: median with the middle line, upper and
lower quartiles with the box limits, 1.5x interquartile ranges with the whiskers and outliers with points. d ULR-S1 estimated ROC curve based on full data set
(N= 467). e Measured NT50 value versus probability of NT50 > 250 as predicted by ULR-S1 in five randomly chosen validation sets (each symbol
corresponds to a validation set). Purple colored symbols indicate a higher than 0.70 probability of the respective sample to be neutralizing at NT50 > 250
and are therefore denoted as high neutralizers. Gray indicates samples with predicted neutralization NT50 < 250, therefore classified as no/low
neutralizers. f Neutralization prediction based on a modified ULR-S1 model utilizing the diagnostic readout SOC instead of MFI-FOE values as input.
Measured NT50 value versus sum of S1 SOC values (IgG, IgA, IgM) are depicted. Dashed lines correspond to a NT50= 250 horizontally and the sum S1
SOCs= 9.7 vertically. The sum S1 SOCs= 9.7 corresponds to the thresholds depicted for ULR-S1 in (d, e). The gray shaded area corresponds to true
positives (individuals with NT50 > 250 predicted as high neutralizers).

Fig. 5 Monitoring temporal evolution of antibody responses. a ABCORA 2.3 definition of seropositivity in donors with positive RT-PCR confirmed SARS-
CoV-2 infection and known RT-PCR date (N= 369). Seropositivity rating in relation to plasma sampling time point post diagnosis is depicted. Gray shaded
area highlights the first seven days since positive RT-PCR detection. b Power law model, with time since RT-PCR as fixed effect and individual as random
effect, estimating the decay of antibody binding activity based on ABCORA 2.0 measurements at 1–4 longitudinal time points in 120 individuals totaling in
251 measurements. Purple lines correspond to the models estimation and purple shaded areas to the 95% confidence intervals. Antibody half-lives (t1/2 in
days) from significant models are depicted. Significance was assessed using Satterthwaite approximation for a two-sided t-test on the slope parameters. c
Power law model, with time since RT-PCR as fixed effect and individual as random effect, estimating the decay of neutralizing capacity on 251
measurements from 120 individuals. Only individuals with NT50 > 100 at their first measurement were used to estimate the half-life. The purple line
corresponds to the model estimation and the purple shaded area to the 95% confidence intervals. Significance was assessed using Satterthwaite
approximation for a two-sided t-test on the slope parameters.
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Switzerland (BASEC Nrs 2020-01327, 2020-00363; 2021-00437; 2020-00787), in
accordance with the provisions of the Declaration of Helsinki and the Good
Clinical Practice guidelines of the International Conference on Harmonization.
Samples were obtained from the following sources: (i) Zurich blood donation
services (ZHBDS): Anonymized healthy adult plasma from pre-pandemic time
points (January 2019, May 2019 and January 2020) and from the first wave of the
pandemic in Zurich, Switzerland (May 2020) were provided by the ZHBDS internal
serum repository and consent for this study was waived by the ethics committee
(BASEC 2021-00437). (ii) Anonymized leftover specimens from routine diag-
nostics at the Institute of Medical Virology, University of Zurich, the University
Children Hospital Zurich and the Cantonal Hospital Winterthur (BASEC Nrs
2020-01327, 2021-00437). Written informed consent was obtained from all parti-
cipants whose sample was taken during the pandemic at the University Hospital
Zurich (BASEC 2020-01327). For pandemic samples from other hospitals and pre-

pandemic samples consent was waived by the ethics committee. (iii) Healthcare
workers with RT-PCR confirmed SARS-CoV-2 infection participating in a study at
the University Hospital Zurich (BASEC 2020-00363). Written informed consent
was obtained from all participants. (iv) Male plasma donors participating in a
SARS-CoV-2 plasma therapy study conducted at the University Hospital Zurich
(CPT-ZHP, Swissmedic 2020TpP1004; BASEC 2020-00787). Written informed
consent for research was obtained from all participants. The reporting of all human
and patient data is in compliance with STROBE statement. Pre-pandemic (SARS-
CoV-2 negative, N= 825) and confirmed SARS-CoV-2 positive samples (N= 389)
were divided into training and validation cohorts (Supplementary Table 3).
Available demographics data on gender, age, time since positive RT-PCR and
symptom onset, and hospitalization status are reported in Supplementary Table 11.
The SARS-CoV-2 training cohort (N= 175) included plasma collected during
infection (N= 114) and convalescence (N= 61). Per donor only one sampling time
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Fig. 6 Seasonal and annual fluctuation in HCoV reactivity. Reactivity to human coronaviruses (HCoV-NL63, HCoV-229E, HCoV-HKU1, HCoV-OC43)
was compared by ABCORA 5.0. Reactivity in healthy blood donors from 2019 and 2020 was compared. Pre-pandemic samples included: January 2019
(N= 285), May 2019 (N= 288), January 2020 (N= 252). Samples from May 2020 (N= 672) were collected during the pandemic in Switzerland. Only
samples without SARS-CoV-2 specific reactivity as defined by ABCORA were included (N= 653). Stars correspond to levels of significance of two-sided
t-tests comparing the indicated groups. Levels of significance are corrected by the Bonferroni method for multiple testing and indicated as follows:
*p < 0.05/36, **p < 0.01/36, ***p < 0.001/36. Boxplots represent the following: median with the middle line, upper and lower quartiles with the box limits,
1.5x interquartile ranges with the whiskers and outliers with points.
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point was included, longitudinal samples of donors included in the training cohort
were not included in the validation cohort to ascertain independence when
assessing the sensitivity and specificity of the different diagnostic methods. The
SARS-CoV-2 validation cohort (N= 214), comprised plasma collected during
infection (N= 90, one sampling time point per donor) and convalescence
(N= 124, 79 convalescent patients with 1–4 longitudinal samples). Multiple time
points of convalescent patients were included in the validation data set to capture a
wide spectrum of waning antibody titers. Cross-sectional analysis was based on
samples with known time since positive RT-PCR (N= 369) or known time since
symptom onset (N= 333), both including the longitudinal analysis observations.
Both, time since positive RT-PCR and time since onset were known for 330 sam-
ples, with a median time of three days between symptom onset and RT-PCR
(1st–3rd quartile: 1–7 days). Longitudinal analysis of antibody reactivity was based
on 251 observations from 120 convalescent patient with known time since positive
RT-PCR and time since symptom onset. Neutralization was measured on 467

SARS-CoV-2 RT-PCR positive samples (N= 369 with known time since positive
RT-PCR, N= 333 with known time since symptom onset).

We further evaluated cross-reactivity ABCORA 2.0 and 5.0 in left-over plasma
from routine diagnostics in a prepandemic control group with documented, recent
HCoV infection (Training II, N= 75; OC43 (N= 27), HKU1 (N= 17), NL63
(N= 22), 229E (N= 9)). Circulating HCoV are commonly only screened for in
hospitalized, severe respiratory infections and immune compromised individuals
who routinely undergo a broad screening for respiratory infections. Hence, in this
patient group both reduced antibody reactivity due to immune compromising or
elevated HCoV antibody reactivity due to recent or recurring HCoV infection may
occur. As this group is diagnostically relevant we considered it prudent to include
this cohort as Training II data set to verify if cross-reactivity with SARS-CoV-2 in
ABCORA occurs in this setting. Training II data were not included in the threshold
definition to not over-represent individuals with severe illness. This HCoV infected
group displayed overall lower reactivity with SARS-CoV-2 than plasma from
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healthy adults but importantly showed no indication of cross-reactivity (Fig. 1a, b).
Pandemic samples from anonymous blood donors with unknown SARS-CoV-2
status collected in May 2020 (N= 672) were not included in training and
validation cohorts.

Reagents and cell lines. His-tagged SARS-CoV-2-derived antigens (receptor
binding domain (RBD), subunit S1 (S1), subunit S2 (S2), nucleocapsid protein (N))
and S1 of the four circulating HCoVs (HKU1, OC43, NL63, 229E) were purchased
from Sino Biological Europe GmbH, Eschborn, Germany (Supplementary

Table 12). Sources, specifics and concentration of detection and control antibodies
and sera used for ABCORA and neutralization tests are listed in Supplementary
Table 13. 293-T cells were obtained from the American Type Culture Collection
(ATCC CRL-11268)55. HT1080/ACE2cl.14 cells33 were kindly provided by P.
Bieniasz, Rockefeller University, NY. Both cell lines were cultured in DMEM
containing 10% FCS.

Design of multiplex bead assay ABCORA 2.0. We established two bead-based
multiplexed SARS-CoV-2 immunoassays (ABCORA 2.0 and ABCORA 5.0) that

Fig. 7 Effects of pre-existing HCoV immunity during SARS-CoV-2 acquisition. a Time-matched comparison of ABCORA 5.0 reactivity for SARS-CoV-2
and HCoVs in healthy and SARS-CoV-2 infected individuals. Healthy donors were sampled in May 2020 (N= 653; blue). Plasma from SARS-CoV-2
infected individuals were collected between April–June 2020 (N= 65; red). See Supplementary Fig. 14 for analysis on the full SARS-CoV-2 positive cohort
(N= 389). Gray boxes indicate values above the individual MFI-FOE cut-offs for SARS-CoV-2 specific responses for each antigen. Stars correspond to
levels of significance of two-sided t-tests comparing negative versus positive patients. Levels of significance are corrected by the Bonferroni method for
multiple testing and indicated as follows: *p < 0.05/12, **p < 0.01/12, ***p < 0.001/12 (IgG HKU1: p= 0.66, IgG OC43: p= 0.45, IgG NL63: p= 3.3 × 10−04,
IgG 229E: p= 1.6 × 10−05, IgA HKU1: p= 1.8 × 10−03, IgA OC43: p= 1.3 × 10−05, IgA NL63: p= 1.4 × 10−07, IgA 229E: p= 3.0 × 10−05, IgM HKU1:
p= 3.3 × 10−08, IgM OC43: p= 4.3 × 10−03, IgM NL63: p= 1.1 × 10−07, IgM 229E: p= 2.7 × 10−02). Boxplots represent the following: median with the
middle line, upper and lower quartiles with the box limits, 1.5x interquartile ranges with the whiskers and outliers with points. b Linear regression models
showing the association between SARS-CoV-2 and HCoV signals in 204 SARS-CoV-2 positive patients with known dates of first positive RT-PCR
detection. Influences within the same antibody class are investigated. The models were adjusted on age (spline with 3 degrees of freedom), gender, time
since positive RT-PCR (spline with 3 degrees of freedom) and level of HCoV reactivity. Samples are defined to harbor high HCoV reactivity if they show
ABCORA 5.0 HCoV logMFI-FOE values higher than the corresponding median in at least 3 HCoV measurements (HKU1, OC43, NL63 or 229E). Curves
correspond to the models estimation and shaded areas to the 95% confidence intervals. p-values were obtained by running a two-sided Student t-test on
the parameter associated to HCoV reactivity in the linear regression. c Linear regression model showing the association between SARS-CoV-2 IgG and
HCoV IgA signals. Curves correspond to the models estimation and shaded areas to the 95% confidence intervals. p-values were obtained by running a
two-sided Student t-test on the parameter associated to HCoV reactivity in the linear regression. d Linear regression model showing the association
between SARS-CoV-2 IgG and HCoV IgM signals. Curves correspond to the models estimation and shaded areas to the 95% confidence intervals. p-values
were obtained by running a two-sided Student t-test on the parameter associated to HCoV reactivity in the linear regression.
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included a range of SARS-CoV-2 and HCoV antigens (Sino Biological Europe
GmbH, Eschborn, Germany, Supplementary Table 12). Four SARS-CoV-2 antigens
- RBD, S1, S2 and N - were included in both ABCORA 2.0 and ABCORA 5.0.
ABCORA 2.0 included in addition S1 of HCoV-HKU1, ABCORA 5.0 included S1
of all circulating HCoVs (HCoV-NL63, HCoV-229E, HCoV-HKU1, HCoV-
OC43). In brief, individual MagPlex beads (Luminex Corporation, Austin, TX)
with unique fluorescent bead regions were chosen for each antigen, beads were
coupled and mixtures of antigen-coupled beads incubated with patient plasma in a
96-well plate set-up. Median Fluorescent Intensity (MFI) of bead-bound plasma
antibodies were measured utilizing a FlexMap 3D reader (Luminex Corporation,
Austin, TX). We designed the assay to fulfill the following criteria: (i) high spe-
cificity, sensitivity and reproducibility, (ii) flexible multiplex design that allows
straightforward addition and/or alteration of antigens; (iii) wide dynamic range;
(iv) optional quantification of antibody responses; (v) optional recording of anti-
body responses to HCoVs and (vi) use in routine diagnostics and research.

We chose a sterically orientation capture via anti-His antibodies to ensure a
homogenous antigen display. Therefore, carboxylated MagPlex beads (Luminex
Corporation, Austin, TX) were coupled with anti-His antibody (Sino Biological
Europe GmbH, Eschborn, Germany, Supplementary Table 13) and then coupled
with His-tagged antigens using Bio-Plex Amine coupling (Bio-Rad Laboratories
AG, Cressier, Switzerland) according to the manufacturer’s instructions and as
described56.

Serum/plasma titration is in general considered the most accurate strategy to
retrieve quantitative information on antibody reactivity. However, in diagnostic use
tests ideally should deliver (semi)-quantitative information from a single serum
dilution to permit a sufficient throughput. The finalized assay conditions covered a
2-log MFI range across all probed antigen-Ig combinations (Supplementary Fig. 1).
Ratifying the validity of using a single plasma dilution, we confirmed that plasma
from SARS-CoV-2 positive patients and pre-pandemic SARS-CoV-2 negative
plasma samples show optimal dose response curves over a wide plasma dilution
range (Supplementary Fig. 1f). Importantly, a 1/100 dilution of plasma was in all
cases close to the maximum signal, underlining that increasing plasma
concentration would not increase signal intensity but rather endanger decreasing
signals due to prozone effects (Supplementary Fig. 1f).

Maximal anti-His antibody loading was achieved at 5 µg antibody per million
beads (Supplementary Fig. 1c) and used as standard coupling condition. In the final
protocol, five million anti-His antibody coupled magnetic beads were incubated
with His-tagged antigens diluted in PBS at a concentration of 320 nM.
Phycoerythrin (PE)-labeled secondary antibodies specific to IgG, IgA or IgM were
used as detector antibodies (Supplementary Table 13). Quality control of the
antigen loading was performed by incubating the beads with monoclonal
antibodies targeting the corresponding CoV-derived antigen as detailed in
Supplementary Table 12. Analysis was performed with the FlexMap 3D reader
(Luminex Corporation, Austin, TX) with the acquisition of at least of 50 beads per
bead region. Results are recorded as MFI per bead region.

Several control measures were installed to ascertain inter- and intra-assay
performance. To ascertain a low assay-to-assay variability, large batches of
individual antigen-loaded beads were prepared and frozen in aliquots until use at
-20 °C to circumvent decay of the antigen-coupled beads (Supplementary Fig. 1).
Individual coupled beads were mixed on the test day to yield the required antigen
bead cocktail. Cocktails contained 60 beads per bead region per µl. In addition to
the SARS-CoV-2 and HCoV bead regions, each cocktail included an empty bead
region (no antigen coupled) to control for unspecific binding. Quality control and
validation procedures for the FlexMap 3D instrument were done on each day of
experiment according to manufacturer’s instructions. The variability of the assay
was analyzed as follows56: plasma samples from 20 RT-PCR confirmed SARS-CoV-
2 infected patients were pooled and tested over a range of seven dilutions in 31
different titrations performed on 10 different days (Supplementary Fig. 2). Across
all antigens and Ig classes, signals were retained over the test period of 25 days post
bead coupling. Coefficients of variation (CV) of the binding signal across titrations
of the 12 antigen-Ig class combinations proved low (range: 0.010–0.128, median
0.059, Supplementary Fig. 3c, d, Supplementary Tables 1, 2). Same-day and day-to
day variability proved low and comparable (Supplementary Fig. 3e, f). Below a 1/
100 plasma concentration, CV increased markedly (Supplementary Fig. 3d),
defining 1/100 as highest concentration (lowest plasma dilution) to be tested in the
assay. A 1/100 plasma dilution was thus defined as the basic dilution for screening
plasma in ABCORA 2.0 when a qualitative (i.e., presence or absence of SARS-CoV-
2 specific antibodies) or semi-quantitative (i.e., MFI signal intensity) readout is
required.

All ABCORA measurements were derived from single measurements unless
stated otherwise. To measure SARS-CoV-2 specific antibodies in patient plasma,
heat inactivated plasma (1 h at 56 °C) was diluted 1/100 in PBS-BSA 1% unless
otherwise stated. 50 µl diluted plasma were incubated with 50 µl of the ABCORA
antigen bead cocktail for 30 minutes at room temperature in 96-well plates, washed
three times with PBS-BSA 1% and incubated in separate reactions with
phycoerythrin (PE)-labeled detector antibodies for IgG, IgA or IgM at a final
concentration of 1/500 in PBS-BSA 1%. This dilution was previously defined by
titration of the detector antibodies to yield optimal MFI signals. After 45 minutes of
incubation at room temperature, beads were washed three times with PBS-BSA 1%
and analyzed in 96-well plates on the FlexMap 3D reader (Luminex Corporation,
Austin, TX). A minimum of 50 bead reads per antigen was acquired.

To control for genuine cross-reactive antibodies, each plasma sample was
assessed with beads without antigen (empty bead control) in combination which
each detector antibody. For analysis, raw MFI values were transformed to MFI-
FOE to correct for background binding. We established mean empty bead MFI-
FOE for IgG, IgA and IgM of pre-pandemic healthy donors (N= 1016) and set the
mean MFI-FOE+ 4x standard deviation as threshold for the empty bead control.
In absolute levels, these thresholds amounted to MFI-FOE 41.58 (IgG), 55.91 (IgA)
and 269.47 (IgM). Measurements for which the empty bead control recorded values
above this threshold were considered invalid and repeated.

Each Luminex analysis 96-well plate was set up to contain the same set of
control samples, namely 7 serial 4-fold dilutions of a SARS-CoV-2 positive control
donor pool (N= 20 donors, starting dilution 1/100, Supplementary Fig. 1f) and a
pre-pandemic healthy donor pool (dilution 1/100, N= 20 donors, Supplementary
Fig. 1f). These positive and negative controls allow to control assay performance
across independent measurements and in addition enable retrospective
standardization against external controls if needed.

Definition of SARS-CoV-2 seropositivity in ABCORA 2.0 and ABCORA 5.0. To
distinguish SARS-CoV-2-specific from cross-reactive antibodies, we defined MFI-
FOE thresholds for each of the 12 SARS-CoV-2 antigen and Ig class combinations
based on plasma antibody reactivity in training cohorts (Supplementary Tables 3
and 4). These included pre-pandemic healthy donor plasma (Training I, N= 573),
donors with recent HCoV infection (Training II, N= 75; OC43 (N= 27), HKU1
(N= 17), NL63 (N= 22), 229E (N= 9)) and donors with confirmed SARS-CoV-2
infection (Training III, N= 175). Thresholds were set to minimize false-positives
while ensuring sensitivity for SARS-CoV-2 antibody detection and to reach an
overall specificity above 99% and included levels for border-line reactivity for IgG
RBD, IgG S1 and IgG N to allow also modest antibody reactivity to these antigens
to be examined. MFI-FOE reads of individual samples were transformed into
signal-over cut-off (SOC) values (MFI-FOE/threshold). SOC values are used for
assessing positive reactivity for each individual antigen-antibody class combination,
with SOC > 1 denoting positive reactivity, SOC < 1 denoting negative reactivity.
When setting individual thresholds, it must be considered that for each of the 12
probed activities cross-reactivities may occur. With 12 individual SOC parameters
recorded, overall specificity will decrease if any positive SOC independently suffices
to rate a sample overall as SARS-CoV-2 antibody positive. To exemplify: Assuming
independent responses, even a high 99% specificity for each antigen will add up to
an overall low 88% specificity across the entire assay. We thus required for SARS-
CoV-2 positive calling in ABCORA 2.0 a minimum of two specificities to reach
activity above threshold. The combined SOC values used to define the overall
serostatus of a given sample are detailed in Supplementary Table 5. For IgG RBD,
S1 and N, for which we also recorded border-line SOC activity, we allowed for a
combination of 1 antigen reactivity SOC > 1, the second reactivity SOC > border
line. The final threshold and positive call criteria allowed for a differentiation of
partial (early seroconversion with only IgM and IgA responses) to full ser-
oconversion (including IgG responses) (Supplementary Table 5). In addition, the
criteria denote samples with weak reactivity and/or indeterminate reactivity
(Supplementary Table 5).

To ease comparison between ABCORA 2.0 and ABCORA 5.0 the same
threshold cut-offs were used for ABCORA 5.0. We chose not to create specific cut-
off thresholds for HCoV antibody reactivity as an accurate definition of a negative
response is complex due to the wide-spread exposure to HCoVs and considerable
antibody cross-reactivity between them. HCoV responses were however included
in the statistical analyses as MFI-FOE values.

Definition of SARS-CoV-2 seropositivity using logistic regression classification.
Classification of seropositive versus seronegative samples in ABCORA 2.1 was rea-
lized using logistic regression. The identical training and validation data used for the
establishment for ABCORA 2.0 were used. As the ABCORA 2.0 binding reactivities
were highly correlated, we included the following variables in the model (Supple-
mentary Fig. 6a): the mean value of all IgG MFI-FOE responses (RBD, S1, S2, N), the
mean value of the IgA MFI-FOE responses against RBD, S1 and S2, and the mean
value of the IgM MFI FOE responses against RBD, S1 and S2. IgA and IgM responses
to N were excluded as they were not clustering with the other responses of the same Ig
class (Supplementary Fig. 6a). The logistic regression was used to estimate and predict
the probability of a given sample to be positive (p) as described in equation (1).

p ¼
exp

β0þ βG �meanðIgG : RBD; S1; S2;NÞ þ βA �meanðIgA : RBD; S1; S2Þ
þ βM �meanðIgM : RBD; S1; S2Þ

� �

1þ exp
β0þ βG �meanðIgG : RBD; S1; S2;NÞ þ βA �meanðIgA : RBD; S1; S2Þ

þ βM �meanðIgM : RBD; S1; S2Þ

� �

ð1Þ
Parameters β0, βG, βA and βM were estimed on the training dataset. A sample

was then defined as positive if its predicted probability of being positive was above a
threshold c′. This threshold was defined as to obtain a specificity of at least 0.99 and
maximal sensitivity on the training dataset (similarly to c for the random forest). In
summary, in ABCORA 2.1, any new sample is defined as seropositive if its probability
of being seropositive as estimated by the logistic regression is above c′. Analyses were
performed in R version 3.6.3.
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Definition of SARS-CoV-2 seropositivity using random forest classification.
Classification of seropositive versus seronegative samples in context of ABCORA
2.0 and ABCORA 5.0 was realized using a random forest approach following the
basic setup of random forests as described in57. The random forest itself was built
of an ensemble of 1000 classification trees using MFI-FOE responses (IgA, IgG and
IgM against RBD, S1, S2, N). The probability of a sample being positive as pre-
dicted by the random forest is the average of the probabilities over all 1000 trees.
Finally, a sample is defined as positive if its probability of being positive is above a
threshold c, which is defined as to obtain a specificity of at least 0.99 and a maximal
sensitivity on the training dataset. In summary, any new sample is defined as
seropositive if its probability of being seropositive as estimated by the random
forest is above the threshold c. We conducted a series of random forest analyses
that considered either only SARS-CoV-2 responses or SARS-CoV-2 and HCoV
responses in ABCORA 2.0 and ABCORA 5.0: ABCORA 2.2 and ABCORA 2.3 were
trained and used for prediction on ABCORA 2.0 data and included only SARS-
CoV-2 responses or SARS-CoV-2 and HKU1 responses, respectively. ABCORA 5.4
(SARS-CoV-2 responses only) and ABCORA 5.5 (SARS-CoV-2 and HCoV
responses) were trained on ABCORA 5.0 data. Details on the data inclusion for the
respective models are listed in Supplementary Table 3 and Supplementary Table 10.
Analyses were performed in R version 3.6.3 using packages randomForest and
ranger58–61.

To ensure robustness of our findings, we performed a sensitivity analysis by
randomizing the training and validation datasets using a 5-fold cross validation
method. Both sets of positives and negatives samples were divided in five equal
parts and we defined that way five validation sets (consisting of the i-th set of
positives and the i-th set of negatives, i= 1.5). The rest of the data was used for
training the ABCORA 2.3 random forest. For each validation set, the specificity and
sensitivity of the random forest were computed on the training, validation and
training+validation sets (Supplementary Table 6).

Validation and verification using external controls. We used the Anti-SARS-
CoV-2 Verification Panel for Serology Assays (NIBSC code: 20/B770, NIBSC) to
verify the performance of the ABCORA 2.0 and ABCORA 2.3 test. Serum samples
of the verification panel measured by ABCORA 2.0/2.3 as described and results
compared with the results of commercially available assays reported by the NIBSC
(32 and Supplementary Table 7). We further verified the sensitivity of the ABCORA
2 test in detecting SARS-CoV-2 infection in a direct comparison with commercial
tests. Antibody status of plasma from SARS-CoV-2 positive individuals (N= 171)
were analyzed with the following test systems: Included test systems targeted the N
protein (Elecsys® Anti-SARS-CoV-2 (Roche Diagnostics GmbH)), the RBD region
of the S protein (Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics GmbH)),
and the S1 subunit (EUROIMMUN Anti-SARS-CoV-2 ELISA (IgG)) (Supple-
mentary Table 8). All assays were performed according to the manufacturer’s
instructions in the diagnostics unit of the Institute of Medical Virology, University
of Zurich, Switzerland.

SARS-CoV-2 binding antibody titers. To define binding antibody titers, eight
serial 4-fold dilutions starting with a 1/25 dilution of plasma were prepared and
measured in ABCORA 2.0. To derive quantitative information, MFI values were
corrected for background activity (MFI-empty bead control) and we defined the
area under the MFI curve (AUC) across the dilution series for each antigen-Ig
combination. As a second quantitative readout, we calculated 50% effective titer
concentrations (EC50) using a four-parameter logistic curve (y= Bottom+ (Top-
Bottom)/(1+ 10^((logEC50-X) � HillSlope))).

Quantification of SARS-CoV-2 S1 and RBD activity. We used two approaches to
standardize SARS-CoV-2 S1 and RBD activity. The first was based on the S1/RBD
specific antibody CR3022 (38 and Supplementary Table 13). Serial dilutions of IgG,
IgA and IgM versions of CR3022 were used to create standard curves on RBD and
S1 coated beads. The linear range of the standard and sample dilution curve was
used for quantitation. We fitted a four-parameter logistic curve (y= Bottom+
(Top-Bottom)/(1+ 10^((logEC50-X) � HillSlope))) (Supplementary Fig. 7b)
through which MFI values of measured samples are interpolated into a corre-
sponding concentration of antibody (µg/ml). We used this approach to quantify the
concentration of RBD and S1 antibody reactivity in the positive donor control, and
used titrations of the donor pool included on each ABCORA plate to calculate the
S1 and RBD content of plasma samples in relation to it. We used the same strategy
in combination with the WHO International Standard Anti-SARS-CoV-2 Immu-
noglobulin (NIBSC 20/13632) to defer IU/ml content of the internal ABCORA
positive donor pool and the individual specimen tested (Supplementary Fig. 7). The
WHO International Standard consists of a pool of plasma from individuals with
confirmed SARS-CoV-2 infection. RBD and S1 content of the ABCORA positive
donor pool quantified via the polyclonal WHO standard was highly similar within
each Ig class (Supplementary Fig. 7b). In contrast, RBD values estimated by the
mAb CR3022 were a factor 2.4–3.9 lower than the corresponding S1 values, sug-
gesting an affinity difference of CR3022 for the two antigens (Supplementary
Fig. 7b).

Temporal evolution of SARS-CoV-2 binding antibody response. Antibody
binding of 140 convalescent patients was measured longitudinally in 274 mea-
surements with ABCORA 2.0, including 251 measurements from 120 patients with
known time since positive RT-PCR. We assumed the antibodies (analyzed as
logMFI-FOE) were declining with time from 21 days after positive RT-PCR and
estimated the decay using a power law mixed model with random effect on the
intercept62. As time measures days post first positive RT-PCR result (Fig. 5b) or
days post onset of symptoms (Supplementary Fig. 11b) were employed. Half-lives
(t1/2, in days) of significant response with negative decays were calculated based on
the respective estimated decay parameters. Analyses were performed in R version
3.6.3 using packages lme4 and lmerTest63.

SARS-CoV-2 pseudo-neutralization assay. SARS-CoV-2 plasma neutralization
activity was defined using an HIV-based pseudovirus system as described33. The
env-inactivated HIV-1 reporter construct pHIV-1NL4-3 ΔEnv-NanoLuc (pHIV-
1Nanoluc) and HT1080/ACE2cl.14 cells were kindly provided by P. Bieniasz,
Rockefeller University, NY, USA. To create a SARS-CoV-2 spike expression
plasmid (P_CoV2_Wuhan), a codon-optimized C terminal truncated (AA 1255-
1273) spike encoding gene of strain Wuhan-Hu-1 (GenBank accession no.
MN908947) was synthesized (GeneArt, Thermo Fisher Scientific, Waltham, MA)
and cloned into pcDNA.3.1. Pseudotyped SARS-CoV-2 spike expressing viruses
were generated by co-transfecting 293-T cells with a mixture of pHIV-1Nanoluc,
P_CoV2_Wuhan and PEI Max (Polysciences Europe GmbH, Hirschberg, Ger-
many). After 48 h virus supernatants were filtered (0.2 µm) and stored in aliquots at
−80 °C until use. Infectivity of virus stocks was measured by infection of HT1080/
ACE2cl.14 cells. For this 384-well culture plate pretreated with poly-L-Lysine were
seeded with HT1080/ACE2cl.14 (2200 cells/well) one day before the assay. Cells
were infected with titrated virus stocks and NanoLuc luciferase activity in cell
lysates measured 48 h post infection using the Nano-Glo Luciferase Assay System
(Promega, Fitchburg, WI). For this, cells were washed once with PBS, supernatant
was removed and cells were lysed with 20 µl/well of Luciferase Cell Lysis reagent
(Promega, Fitchburg, WI) for 15 min under continuous shaking at room tem-
perature. 20 µl of 1/50 diluted NanoGlo buffer were added and NanoLuc luciferase
activity (relative light units, RLU) was measured after 5 min incubation at room
temperature on a Perkin Elmer EnVision reader. Input of SARS-CoV-2 pseudo-
viruses for neutralization assays was adjusted to yield virus infectivity corre-
sponding to 5–10 × 106 RLU (corresponding to 100-250-fold over background
RLU values) in the absence of inhibitors. To measure plasma neutralization activity
six serial 4-fold dilutions of plasma starting at a 1/25 dilution were prepared. 20 µl
of the diluted plasma and 20 µl of virus were preincubated for 1 h at 37 °C and then
30 µl of the virus/plasma mix were transferred to 384-well plates seeded with
HT1080/ACE2cl.14 cells in a volume of 30 µl. This resulted in a final concentration
of the plasma starting dilution of 1/100. Plasma neutralization titers causing 50%,
80% and 90% reduction in viral infectivity (NT50, NT80 and NT90, respectively)
compared to controls without plasma were calculated by fitting a sigmoid
dose–response curve (variable slope) to the RLU data, using GraphPad Prism with
constraints (bottom= 0, top= 100). If 50% inhibition was not achieved at the
lowest plasma dilution of 1/100, a ‘less than’ value was recorded. All measurements
were conducted in duplicates.

Predicting neutralization based on ABCORA binding activity. To compare the
ability of SARS-CoV-2 binding activity measured in ABCORA 2.0 to predict the
neutralization status, we measured neutralization activity to Wuhan-Hu-1 in
SARS-CoV-2 positive individuals (N= 467) and classified individuals as high
neutralizers (NT50 > 250, N= 332) and low neutralizers (NT50 < 250, N= 135).
Six different classification models were designed to assign individuals to the high or
low neutralizers category, based on their ABCORA2.0 binding patterns we estab-
lished two univariable logistic regression (ULR) models that included mean MFI-
FOE spike antigen S1 reactivities and mean MFI-FOE spike antigen RBD reac-
tivities, respectively. S1 and RBD were chosen due to their highest correlation with
NT50 (r= 0.82 and r= 0.80 for the total spike reactivities of S1 and RBD
respectively, Supplementary Fig. 9). In addition to these two ULR, we established a
multivariate logistic regression model including both mean S1 and RBD reactivities
(MFI). We further devised three models that considered all 12 SARS-CoV-2
binding parameters recorded by ABCORA 2.0. Two multivariable logistic regres-
sion models were based on a principal component analysis on all binding activities
and included the first two (respectively four) principal components, which
explained 60% (respectively 75%) of the variance in the data. We also included in
our model comparison a classification based on a random forest analysis that
incorporated all 12 SARS-CoV-2 binding activity variables.

For all six models, performance was assessed in 100 cross-validation sets: each
set was built by randomly sampling without replacement among the 467
measurements available. 80% of the data set was used to train the model (N= 374).
Prediction of neutralization status was realized on the other 20% (N= 93) and
compared to the true NT50 value and neutralization status, using a roc curve. The
area under the curve (AUC) was computed for all six models in each cross-
validation run. The Bayesian information criterion (BIC) was computed for all five
logistic regressions in each cross-validation run.

To increase the utility of the ULR-S1 prediction model for clinical diagnostics
we devised a modified neutralization prediction model ULR-S1-SOC based on the
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signal over cut-off (SOC) values reported for ABCORA 2.0. The ULR-S1-SOC
estimates the probability of NT50 > 250 based on the sum of S1 SOC values for
IgG, IgA and IgM as indicated in Eq. (2).

PðNT50>250Þ ¼ expðaþ b � log10ðsum S1 SOCÞÞ
1þ expðaþ b � log10ðsum S1 SOCÞÞ ð2Þ

With estimated values: a=−2.6447 and b= 3.5353.
ULR-S1-SOC estimates for the probability of NT50 > 100 were analyzed in

analogy (Supplementary Table 9 and Supplementary Fig. 10).

Association between HCoVs and SARS-CoV-2 reactivities. To explore the
association between HCoVs and SARS-CoV-2 reactivities, we defined a new HCoV
response variable (HCoV high/low) for each antibody class (IgG, IgA, IgM) as
follows: a patient had high HCoV Ig reactivity for a given antibody class if its
measurements were higher than the population median in at least three out of the
four HCoV measurements (HKU1, OC43, NL63, 229E). To assess inter-
dependencies between HCoV and SARS-CoV-2 responses, we then included the
HCoV response variable in a linear regression model of SARS-CoV-2 reactivities in
the same antibody class. The linear regression models were estimated on a subset of
SARS-CoV-2 positive patients (N= 204), measured on ABCORA 5.0 less than
60 days since positive RT-PCR. The restriction to 60 days was chosen to allow
modeling the effect of time with splines. This time period restriction further
guaranteed a gender balance, as convalescent donors with longer follow up were all
males recruited for a plasma therapy study (CPT-ZHP, Swissmedic 2020TpP1004).
Regression analyses were adjusted on time (days post positive RT-PCR or onset of
symptoms; as a spline with 3 degrees of freedom), age (as a spline with 3 degrees of
freedom) and gender.

Among the 204 patients analyzed for interdependencies, information regarding
hospitalization status (not hospitalized, hospitalized not in ICU, hospitalized in
ICU) was known for 160 of them. For 80 patients we had samples that were
collected less than 30 days since SARS-CoV-2 diagnosis by positive RT-PCR
allowing an estimate of HCoV levels close to SARS-CoV-2 acquisition. We
performed an additional analysis on this subset of patients using an ordinal
regression and a logistic regression to predict the hospitalization status depending
on high or low IgG HCoV reactivity, adjusted on age (as a spline with 3 degrees of
freedom) and gender. We checked for robustness of the result in a sensitivity
analysis by adjusting on time since positive RT-PCR in addition to age and gender
(Supplementary Fig. 15).

Statistical analysis. Statistical analyses were performed in R (Version 3.6.3).
Figures were made using the ggplot2 package64. When included, boxplots represent
the following: median with the middle line, upper and lower quartiles with the box
limits, 1.5x interquartile ranges with the whiskers and outliers with points. Heat-
maps were made using the ComplexHeatmap package65. Significance of Spearman
rank correlations were assessed through asymptotic t approximation. Differences in
means between two groups with independent measures were tested using two-sided
t-tests. When applicable, multiple testing was adjusted using Bonferroni correction
for multiple comparisons. A one-way ANOVA with 3 degrees of freedom was used
in addition to two-tailed t-tests in Fig. 6 to provide insights on overall versus group
comparison. When analyzing datasets including repeated measurements of the
same individuals (Fig. 3a, Fig. 5b, Fig. 5c, Supplementary Fig. 8a, Supplementary
Fig. 11b), we used linear and power-law mixed models with time since positive RT-
PCR or time since symptom onset (continuous or binary variable) as fixed effect
and individual as random effect. In the case of Fig. 5c and Supplementary Fig. 11c,
the decreasing slope of neutralization titers was estimated by considering only
individuals with neutralization titers above the detection levels (NT50 >100) at
their first measurement. For all linear mixed models, a Satterthwaite approximation
for a two-sided t-test was used to determine if the estimated slope was significantly
different from 0. In addition, half-lives were obtained from the decay rate estimated
on the log of either MFI-FOEs (Fig. 5b, Supplementary Fig. 11b) or NT50s (Fig. 5c,
Supplementary Fig. 11c) as follows: t1/2= t0 � exp(log10(2)/rate), with
t0= 21 days since positive RT-PCR or since symptom onset. In Fig. 7b, c, linear
regressions were used to estimate the association between HCoV and SARS-CoV-2
reactivities: a Student t-test with two-sided hypothesis was used to assess if this
association was significantly different from 0.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw serological measurements generated in this study are provided in Supplementary
Data 2. Data depicted in charts and graphs are made available in the Source Data
file. Source data are provided with this paper.

Code availability
Codes to assess serostatus based on the ABCORA 2.3 method are available at: https://
github.com/chlpasin/SARS-CoV-2-serology66.
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