Transfusion Medicine and Hemotherapy

Research Article

Transfus Med Hemother 2018;45:239–250 DOI: 10.1159/000490714

Received: March 26, 2018 Accepted: June 4, 2018 Published online: July 10, 2018

Low-Frequency Blood Group Antigens in Switzerland

Christoph Gassner^a Frauke Degenhardt^b Stefan Meyer^a Caren Vollmert^c Nadine Trost^a Kathrin Neuenschwander^a Yvonne Merki^a Claudia Portmann^a Sonja Sigurdardottir^a Antigoni Zorbas^d Charlotte Engström^d Jochen Gottschalk^d Soraya Amar el Dusouqui^e Sophie Waldvogel-Abramovski^e Emmanuel Rigal^e Jean-Daniel Tissot^f Caroline Tinguely^g Simon M. Mauvais^h Amira Sarraj^h Daniel Besseroⁱ Michele Stalderⁱ Laura Infanti^j Andreas Buser^j Jörg Sigle^k Tina Weingand¹ Damiano Castelli^m Monica C. Braischⁿ Jutta Thierbachⁿ Sonja Heer^o Thomas Schulzki^o Michael Krawczak^p Andre Franke^b Beat M. Frey^d

- ^b Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany;
- ^c Agena Bioscience GmbH, Hamburg, Germany;
- ^d Blood Transfusion Service Zürich, SRC, Schlieren, Switzerland;
- ^e Blood Transfusion Service Genève, SRC, Geneva, Switzerland;
- ^f Blood Transfusion Service Vaud, SRC (recently merged with Interregional Blood Transfusion, SRC, Ltd., Bern), Lausanne, Switzerland;
- ^g Interregional Blood Transfusion, SRC, Ltd., Bern, Switzerland;
- ^h Blood Transfusion Service Neuchâtel-Jura, SRC, Neuchâtel, Switzerland;
- ¹ Blood Transfusion Service Valais, SRC (recently merged with Interregional Blood Transfusion, SRC, Ltd., Bern), Sion, Switzerland;
- ^j Blood Transfusion Service beider Basel, SRC, Basel, Switzerland;
- ^k Blood Transfusion Service Aargau-Solothurn, SRC, Aarau, Switzerland;
- ¹ Blood Transfusion Service Zentralschweiz, SRC, Luzern, Switzerland;
- ^m Blood Transfusion Service Svizzera Italiana, SRC, Lugano, Switzerland;
- ⁿ Blood Transfusion Service Ostschweiz, SRC, St. Gallen, Switzerland;
- ^o Blood Transfusion Service Graubünden, SRC, Chur, Switzerland;
- P Institute for Medical Informatics and Statistics, Christian-Albrechts-University Kiel, Kiel, Germany

Keywords

Blood groups · Low-frequency antigen · High-frequency antigen · Rare donor panel/program · Rare/molecular blood group · Blood group allele · Population genetics · Switzerland

Summary

Background: High-frequency blood group antigens (HFA) are present in >90% of the human population, according to some reports even in >99% of individuals. Therefore, patients lacking HFA may become challenging for transfusion support because compatible blood is hardly found, and if the patient carries alloantibodies, the cross-

Christoph Gassner, Frauke Degenhardt, and Stefan Meyer contributed equally to this work.

match will be positive with virtual every red cell unit tested. Methods: In this study, we applied high-throughput blood group SNP genotyping on >37,000 Swiss blood donors, intending to identify homozygous carriers of low-frequency blood group antigens (LFA). Results: 326 such individuals were identified and made available to transfusion specialists for future support of patients in need of rare blood products. Conclusion: Thorough comparison of minor allele frequencies using population genetics revealed heterogeneity of allele distributions among Swiss blood donors which may be explained by the topographical and cultural peculiarities of Switzerland. Moreover, geographically localized donor subpopulations are described which contain above-average numbers of individuals carrying rare blood group genotypes.

© 2018 S. Karger GmbH, Freiburg

Dr. Christoph Gassner Blood Transfusion Service, SRC, Zurich Molecular Diagnostics & Research (MOC) Rütistrasse 19, 8952 Schlieren, Switzerland c.gassner @zhbsd.ch

Fax +49 761 4 52 07 14 Information@Karger.com www.karger.com

KARGER

© 2018 S. Karger GmbH, Freiburg

Accessible online at: www.karger.com/tmh

^a Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Department of Molecular Diagnostics & Research (MOC), Schlieren, Switzerland;

Introduction

One of the challenges in transfusion medicine is to provide compatible blood for patients negative for a high-frequency blood group antigen (HFA) and who have an alloantibody against the antigen [1]. Such HFA negativity may either be caused by a complete lack of the protein serving as carrier of a certain blood group system with concomitant negativity for all its associated antigens, or by the lack of only one specific antigen, because of the presence of an identical variant blood group protein inherited on both parental haplotypes. Low-frequency blood group antigens (LFA) are the less frequent antithetic variants of HFAs. LFAs do not create a major transfusion problem from the aspect of finding compatible donors. However, a potentially dangerous antibody to an LFA could remain undetected if a full cross-match analysis was not performed [2].

The Kell blood group system is an exemplary model for the above-mentioned model. The system is highly polymorphic and expresses 36 antigens, all encoded on a type II glycoprotein of 732 amino acids encoded by the KEL gene and its allelic variants [3, 4]. Some of the Kell antigens have been classified into antithetical pairs, each represented by one HFA and its correspondent LFA, e.g. K and k or Kp^a and Kp^b, others being independently expressed or having unknown antithetical partners. KEL2 or k+, formerly also named 'Cellano', is a HFA and its antithetical variant is the LFA: KEL1 or K+. As a result, K+ k- homozygous individuals are encountered only rarely, e.g. at an exemplary frequency of 1 per 1,371 Swiss [5]. While, K+ k- individuals still express other Kell antigens, e.g. Kp^b or KEL11, none of the Kell antigens are expressed on cells of the Kell-null phenotype, K₀, which arise from homozygous or compound heterozygous KEL-inactivating mutations [6-8]. K₀ individuals are exceedingly rare and may only be found at frequency fewer than 1 individual per 1 million Austrians [6].

Some blood types are extremely scarce worldwide, and requests for transfusion are particularly difficult to fulfill. On the other side of the frequency spectrum, e.g. where prevalence of certain antigens is shifting towards 'public antigen frequency', a generally accepted numerical definition for 'rarity' is lacking. For instance, Dblood is common in Caucasians (approximately 15% of the population), but it is rare in Asia (less than 1%) [2]. In some nations, a blood type with a prevalence of 1 in 100 is considered rare, whereas in other countries, the same status requires antigen prevalence of less than 1 in 5,000. Moreover, in some programs, rare donors are exclusively determined by being negative for single HFAs, whereas in other programs, donors negative for a combination of several public (common) red cell antigens are also recognized as being rare. As a consequence, the definition of a 'rare donor' is widely different, as vividly demonstrated by the existent variety of national rare donor programs [9].

Traditionally, red cell antigens have been identified by serology. Recent advances in molecular biology made it possible to genotype most of the blood group antigens employing high-throughput technology platforms [10]. Also, today, blood group antigens without suitable anti-sera – such as Scianna and Dombrock – are screened for using high-throughput genotyping methods [11, 12]. The presented project was conducted for the main purpose to ensure the supply of rare blood units to the Swiss population. MALDI-TOF MS was adapted and used to genotype 37,253 Swiss blood donors by a customized 'RARE module' covering 26 blood group single nucleotide polymorphisms (SNPs) including 22 antithetical HFA/LFA pairs (table 1) [13].

Material and Methods

Samples

Between 2012 and 2014, samples from 37,253 blood donors were collected at different sites throughout Switzerland. Donor samples were provided by 11 regional blood transfusion services (BTSs) headed in Geneva (n = 1,348), Lausanne (n = 1,526), Neuchâtel (n = 1,029), Sion (n = 760), Basel (n = 1,222), Aarau (n = 855), Luzern (n = 2,770), Zurich (n = 24,058), Lugano (n = 768), St. Gallen (n = 1,476), and Chur (n = 1,441). In 2012, blood donations were collected by 13 independent BTSs, most of them covering more than their administrativeregional area, also known as 'cantons'. As a consequence, respective inhabitant numbers and deduced 'coverage' of every BTS given need to be considered as approximate (table 2). The ethical approval of the study was waived by the ethical committee of the Canton of Zurich, and all donors explicitly permitted genetic laboratory investigations by written consent.

Blood Group Polymorphisms, SNPs, Analyzed by MALDI-TOF MS 'RARE Module'

For automated DNA extraction, magnetic bead technology was used (Chemagen; Perkin Elmer, Baesweiler, Germany). Assay design for all SNPs (table 1), quality control of the primer mixes, and MALDI-TOF MS-based genotyping was done as described previously [5].

Prior to implementation of the 'RARE module' into routine use, molecular typing performance was validated by assessing a panel of 95 natural and artificial, reference DNAs representing all blood group specificities of the module. Additionally, every individual typing batch was controlled for specificity, using the identical reference DNA panel. Reference DNAs representing the blood group phenotypes, Lu(a+b-), KK, Kp(a+b-) and Yt(a-b+), and heterozygous phenotypes representative of Lu(08+14+), Au(a+b+), Js(a+b+), KEL(11+ 7+) and Do(a+b+) were provided by BTS Zurich [5, 14–16]. Sample material of individuals with phenotypes Di(a+b+), Wr(a+b+), Co(a-b+), and Kn(a-b+) was given by Susanne Kilga-Nogler (Zentralinstitut für Bluttransfusion und Immunologische Abteilung, Innsbruck, Austria). Indian, In(a+b-), reference DNAs were provided by Joyce Pool (International Blood Group Reference Laboratory, NHS Blood and Transplant, Bristol, UK). Sample material of Vel- individuals was provided by Christof Jungbauer (Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Vienna, Austria).

Artificially synthesized control DNAs were used in cases where natural blood group DNA was not available and were generated by standard PCRs using one mutated and one regular amplification primer each, in order to cover the respective polymorphic SNPs. Artificial DNA fragments were generated for the following LFAs and their antithetical HFA partners: SC2 (*SC*02*), LW^b (*LW*07*), Hy– (*DO*02.-04*), Jo(a–) (*DO*01.-05*), McC^b (*KN*01.06*), Vil+ (*KN*01.07*), and all Cromer antigens [17–21]. Before use, artificial DNA fragments were titrated to equimolar copy concentrations as found in genomic DNA extracts from donor samples before validation.

Provision of Diagnostic Anti-Sera

Rare diagnostic anti-sera for serotyping by standard techniques, such as anti-Di^b, anti-Co^a, anti-LW^a, and anti-Js^a, were made available by exchange programs or were provided by sources as described previously [5, 22].

Data Sources, Statistical Methods, and Allele Frequency Calculation Population data of Switzerland was taken from the report published annually by the Schweizerische Eidgenossenschaft, 'Bundesamt für Statistik' (table 2) [23]. Table 1. Specificities included in the matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS) based 'RARE module'

						,	•										
Blood	ISBT	Blood	Gene	Chromo-	Allele name 1	Allele name 2	CDS [§]	CDS on mRNA	nt 1	nt 2	Amino acid	dbSNP	Anti- H	IFA/ A	vllele S	NP Plex	Plex
group	#	group	(HGNC)	some			position	accession			exchange	rs number	gens I	FA ct	t. c	t. W1	W2
system								number									
ABO	001	ABO A vs O1	ABO	9q34.2	$ABO^*A(wt)$	$ABO^{*}O.0I$	261	NM_020469.2	IJ	del G	fsThr88Pro	rs8176719	2	1	2	-	W2
ABO	001	ABO A vs O2	ABO	9q34.2	$ABO^*A(wt)$	$ABO^*O.02$	802	NM_020469.2	IJ	A	Gly268Arg	rs41302905	I	I	1	-	W2
ABO	001	ABO A vs B	ABO	9q34.2	$ABO^*A(wt)$	ABO^*B	803	NM_020469.2	G	С	Gly268Ala	rs8176747	1	I	1	1 W1	I
Lutheran	005	Lu ^a / Lu ^b	BCAM	19q13.32	LU^{*0I}	LU*02 (wt)	230	NM_005581.4	A	G	His77Arg	rs28399653	2	_	2	1 W1	Т
Lutheran	005	Lu8 / Lu14	BCAM	19q13.32	LU*02.14	LU*02 (wt)	611	NM_005581.4	A	Τ	Lys204Met	rs28399656	2	1	1	1 W1	I
Lutheran	005	Au ^a / Au ^b	BCAM	19q13.32	LU*02.19	LU*02 (wt)	1615	NM_005581.4	IJ	A	Ala539Thr	rs1135062	2	I	1	-	W2
Kell	900	K / k	KEL	7q34	KEL*01	KEL*02 (wt)	578	NM_000420.2	Н	C	Met193Thr	rs8176058	2	1	2	1 W1	Т
Kell	900	Kp ^a / Kp ^b	KEL	7q34	KEL*02.03	KEL*02 (wt)	841	NM_000420.2	Τ	U	Trp281Arg	rs8176059	2	1	1	1 -	W2
Kell	006	K11/K17	KEL	7q34	KEL*02.17	KEL*02 (wt)	905	NM_000420.2	C	Τ	Ala302Val	rs61729034	2	1	1	1 W1	I
Kell	900	Js ^a / Js ^b	KEL	7q34	KEL*02.06	KEL*02 (wt)	1790	NM_000420.2	C	Τ	Pro597Leu	rs8176038	2	1	1	1 W1	I
Diego	010	Di ^a / Di ^b	SLC4A1	17q21.31	$DI^{\star}0I$	$DI^{*}02 (wt)$	2561	NM_000342.3	H	C	Leu854Pro	rs2285644	2	1	2	1 W1	T
Wright	010	Wr^{a}/Wr^{b}	SLC4A1	17q21.31	DI*02.03	DI*02 (wt)	1972	NM_000342.3	A	IJ	Glu658Lys	rs75731670	2	-	-	-	W2
Cartwright	011	Yt ^a / Yt ^b	ACHE	7q22.1	$YT^*01 (wt)$	YT*02	1057	NM_001302621.1	U	A	His353Asn	rs1799805	2	-	2	1 W1	1
Scianna	013	SC1, SC2	ERMAP	1p34.2	SC*01 (wt)	SC*02	169	NM_001017922.1	IJ	A	Gly57Arg	rs56025238	2	1	2	- 1	W2
Dombrock	014	Do ^a / Do ^b	ART4	12p12.3	D0*01	DO*02 (wt)	793	NM_021071.2	A	G	Asn265Asp	rs11276	2		2	-	W2
Dombrock	014	Hy+/Hy-	ART4	12p12.3	$D0^{*}0204$	DO*02 (wt)	323	NM_021071.2	T	IJ	Val108Gly	rs28362797	2	1	1	1 W1	I
Dombrock	014	Jo(a+) / Jo(a-)	ART4	12p12.3	DO*0105	DO*02 (wt)	350	021071.2	Н	C	Ile117Thr	rs28362798	2	1	1	- 1	W2
Colton	015	Co ^a / Co ^b	AQPI	7p14.3	CO*01.01 (wt)	CO*02	134	NM_198098.2	U	T	Ala45Val	rs28362692	2	-	2	1 W1	1
Landst Wien	016	LW ^a / LW ^b	ICAM-4	19p13.2	LW*05 (wt)	TW*07	299	NM_001544.4	A	IJ	Gln100Arg	rs77493670	2		2	1 W1	1
		()			10 20 20 20		0.00		0	(1100						
Cromer	021	Cr ^a / Cr ^{a-}	CD55	1q32.2	CROM*-01	CROM*01 (wt)	679	NM_000574.3	5	5	Pro227Ala	rs60822373	7	_	7	1 %1	I
Cromer	021	Tc ^a / Tc ^b	CD55	1q32.2	CROM*01.03	CROM*01 (wt)	155	NM_000574.3	н	<u>კ</u> ი	Leu52Arg	rs28371588	- 7	, .	. .	1 W1	I
Cromer	021	1.cª / 1.c ⁵	CD55	1q32.2	CRUM*01.04	CRUM*01 (wt)	155	NM_000574.3		5	Pro52Arg	rs28371588	_	_	_	- MI	I
Knops	022	Kn ^a / Kn ^b	CRI	1q32.2	KN*01 (wt)	KN*02	4681	NM_000573.3	IJ	A	Val1561Met	rs41274768	2	1	2	1 W1	I
Knops	022	McC ^a / McC ^b	CRI	1q32.2	KN*01.06	KN*01 (wt)	4768	NM_000573.3	IJ	А	Glu1590Lys	rs17047660	2	1	1	1 W1	I
Knops	022	Vil+ / Vil-	CRI	1q32.2	KN*01.07	$KN^*01 (wt)$	4801	NM_000573.3	IJ	Α	Gly1601Arg	rs17047661	2	1	1	1 -	W2
Indian	023	In ^a / In ^b	CD44	11p13	$I0_{\star}NI$	IN*02 (wt)	137	NM_001001391.1	С	G	Pro46Arg	rs369473842	2	1	2	1 W1	I
Vel	034	Vel+ / Vel-	SMIMI	1p36.32	VEL*-01	VEL*01	c.64-80	NM_001163724.2	del 1	- 2	Ser22Glnfs*	rs566629828	2	1	2	-	W2
							del		фр								
Gender	n.a.	female/male	GYG2/	Xp22.33/	GYG2*Xfemale	GYGpar*Ymale	i2+3291	NG_021257.1	C	А	I	no rs	I	1	2	1 W1	I
			paralog	Yp11.2				(female) ⁺									
								AC002992.1 (male) ⁺									
Gender	n.a.	female/male	AMEL/	Xp22.2/	$AMEL^{\star}Xfemale$	AMEL*Ymale	i3-7/	NG_012040.1	H	C	I	no rs	I	I	2	-	W2
			paralog	Yp11.2			i4-140	(female) ⁺	÷								
								NG_008011.1 (male)									
SUM excludi	ing SN	Ps for gender de	stermination										50 2	2 4	0 2	9	
[§] CDS =codir	nbəs gu	ence, + genomic	sequences.														

Table 2. Geographic organisation of the 13 Blood Transfusion Services (BTSs) of Switzerland in 2015. Demographic data on Swiss cantons [23]; their B'	TSs
and headquarter locations; origin and number of blood donor samples, sampling coverage of Swiss population	

Canton Name (local language)	Canton abbreviation	BTS headquarter	Number of Inhabitants	Coverage per BTS	Donor tested	% of Swiss	% of coverage
Genève	GE	Geneva	484,736	484,736	1,348	5.82	6.96
Vaud	VD	Lausanne	773,407	773,407	1,5260	9.29	11.10
Neuenburg/Neuchâtel	NE	Neuchâtel	178,107	250,889	1,0290	3.01	3.60
Jura	JU		72,782				
Wallis/Valais	VS	Sion	335,696	335,696	760	4.03	4.82
Basel-Stadt	BS	Basel	191,817	475,048	1,222	5.70	6.82
Basel-Landschaft	BL		283,231				
Aargau	AG	Aarau	653,675	920,093	855	11.05	13.21
Solothurn	SO		266,418				
Luzern	LU	Luzern	398,762	600,392	2,770	7.21	8.62
Obwalden	OW		37,076				
Nidwalden	NW		42,420				
Zug	ZG		122,134				
Zürich	ZH	Zurich	1,466,424	1,967,782	24,058	23.63	28.25
Schwyz	SZ		154,093				
Schaffhausen	SH		79,836				
Thurgau	TG		267,429				
Ticino	TI	Lugano	351,946	351,946	768	4.23	5.05
St. Gallen	SG	St. Gallen	499,065	569,582	1,476	6.84	8.18
Appenzell Ausserrhoden	AR		54,543				
Appenzell Innerrhoden	AI		15,974				
Graubünden	GR	Chur	196,610	236,638	1,441	2.84	3.40
Glarus	GL		40,028				
Swiss areas covered			6,966,209	6,966,209	37,253	83.66	100.00
Freiburg/Fribourg	FR		307,461	307,461	0	3.69	
Bern	BE		1,017,483	1,053,456	0	12.22	
Uri	UR		35,973		0	0.43	
Swiss areas uncovered			1,360,917	1,360,917	0	16.34%	
Total Switzerland			8,327,126	8,327,126	37,253	100.00%	

Absolute allele frequencies were calculated by direct allele counting (table 3) according to Hardy-Weinberg proportions for all samples originating from the greater area covered by BTS Zurich and are given as 'minor allele frequencies' (MAF) [24]. Allele frequencies of individual BTSs were calculated by direct allele counting as described above and, in order to give an averaged 'Swiss allele frequency', statistically corrected (weighted) according to the number of inhabitants of the areas covered by the respective BTSs (tables 2, 4). Additionally, for each allele, the mean, standard deviation (SD) and coefficient of correlation (CV) across all cantons is given (supplementary table 1; available at *http://content.karger.com/ProdukteDB/produkte.asp?doi=490714*). The coefficient of correlation is calculated by division of the SD of the mean and is a measure of dispersion that is independent of the scale. We also checked for correlation between sample size and MAF using the rank correlation coefficient by Spearman [25].

To visualize overall similarities in relative blood group frequencies among BTSs, we performed a principal coordinate analysis (PCoA) on the relative blood frequencies using the R-package ape 5.0. Cantons with comparable blood group frequency will cluster closely together in this analysis, whereas those with unequal blood group frequency will spread apart. In population genetics, a measure of population structure is the fixation index (here F_{ST} [26]) that is usually calculated on SNPs or microsatellite data. F_{ST} can take a value between 0 and 1. In simplified terms, the smaller the F_{ST} to elucidate population substructures based on blood group antigens. The PCoA was performed on the minor blood group alleles having a frequency of >0.1% across all cantons, using an

Eucledian distance measure, and on F_{ST} using it as distance measure. Since we used the F_{ST} as distance measure for the second PCoA, we calculated the variance explained by the first two PCoA components across only the positive eigenvalues. To visualize pairwise (comparison of each canton to the rest) F_{ST} values, we plotted a heatmap using the gplots package 3.0.1 of R. In short, a heatmap plots the differences of the input values using different color intensities. Dendrograms are constructed using hierarchical clustering to depict overall similarities of features using the complete linkage algorithm [27]. We also performed pairwise Fisher's exact tests for each blood group on the contingency tables listing the absolute frequencies of the respective homozygous and heterozygous antigen counts for the analyzed cantons. We adjusted for the sample size of the different panels as described (supplementary table 2; available at *http://content.karger.com/ProdukteDB/produkte.asp?doi=490714*) [28]. Moreover, we adjusted for multiple testing using the correction proposed by Benjamini and Hochberg [29].

Results

MALDI-TOF MS-Based 'RARE Module'

The 'RARE module' consisted of two multiplex reactions, comprising a total of 26 biallelic or triallelic SNP assays for the simultaneous analysis of 13 blood group genes and 40 of their alleles, rep-

\sim
-
~
\mathbf{C}
-
ň
0
Ĺ
ĥ
SI
i i
0
÷
$\overline{\mathbf{v}}$
Ċ
õ
L.
-p
H
0
\odot
4
Ξ
0
H
Β
S
Ι
r
Ę,
5
ar
~
່ອົ
ц
ц
la.
.2
S
<u> </u>
<u>e</u>
E
ŗ
E
m
S
_
Ę
\sim
ц
a
er
Ĩ
E
2
I)
10
õ
õ
<u> </u>
'n
E
~
5
or
s for]
ts for]
ults for]
sults for]
results for]
g results for]
ng results for]
ing results for]
ping results for]
typing results for]
otyping results for]
notyping results for]
enotyping results for]
Genotyping results for]
. Genotyping results for]
3. Genotyping results for]
• 3. Genotyping results for]
le 3. Genotyping results for]
ble 3. Genotyping results for]
able 3. Genotyping results for]
Table 3. Genotyping results for]

	Blood g	roup syste	m																					
	Luthe- ran	Luthe- ran	Luthe- ran	Kell	Kell	Kell	Kell	Diego	Wright	Cart- wright	Sci- anna	Dom- brock	Dom-] brock	Dom- brock	Col- ton	Landst Wiener	Cro- mer	Cro- mer	Cro- I mer	Knops]	Knops I	knops	In- dian	Vel
ISBT number	005	005	005	006	006	006	006	010	010	011	013	014	014 (014	015	016	021	021	021 (022 (022 0)22	023	034
Frequent antigen	Lu ^b	Lu8	Au ^b	k	Kp ^b	K11	Js ^b	Di ^b	Wr ^b	Yt ^a	SC:1	Do ^b	Hy+)	lo(a+)	Co ^a	LW ^a	Cr ^a	Tc ^a	Ι	Kn ^a	McC ^a	Vil-	In ^b	Vel+
Rare antigen	Lu ^a	Lu14	Au ^a	К	Кр ^а	K17	Js ^a	Di ^a	Wr ^a	Yt^{b}	SC:2	Do^{a}	(-yH	lo(a-)	Co ^b	LW ^b	Cr ^{a-}	Tc ^b	Γc ^c Ι	Kn ^b	McC ^b	Vil+	In ^a	Vel-
Geneva																								
AA	1,237	1,304	623	1,212	1,313	1,313	1,313	1,318	1,294	1,163	1,319	507	1,323	1,318	1,239	1,318	1,302	1,318		1,268	1,311 1	,296	1,307	1,297
Аа	78	16	575	106	16	9	9	3	3	151	12	623	2	~	80	3	1	1	2	53	.4	67	0	33
aa invalid	1 37	0	132	1 29	18	0	0	0	0	7	0	201	0 6	0	1 28	0	0 45	0	0 0	0 2	2	× 1	0	1
T	1	2	2	ì	2	ì	ì	i	5	i	;	;		i		i	3	i	•				:	
Lausanne		L V	r ct	000	0 17		107							017	000	101		007			i.		007	
AA	1,39/	104,1	17/	1,392	1,4/8	1,48/	1,480	1,495	1,502	1,524	cv4,1	533 777	016,1	1,4/8	1,390	1,491	1,407	1,489		1,421	[1/4/1]	1,48/	1,490	1,459
Aa	δ	40	649 120	101	32	0 0	0 0			162 E	5 C	C5/			100	7 0	7 0		$\tilde{\mathbf{v}}$	0	x c			70
aa invalid	45	0 35	130	33	15	33	0 34	0 33	0 24	35	16 16	²⁴² 16	15 4	46	3 33	u 33	u 117	u 34		34	47 . :	5	u 34	u 15
Neuchâtel																								
AA	957	1,002	502	957	1,002	1,026	1,026	1,028	666	606	1,020	361	1,028	1,027	956	1,024	1,027	1,026	0,	972	1,024	1,018	1,023	1,002
Aa	69	25	416	69	27	2	2	0	0	116	8	499	1	C	68	4	0	0	1	55	1	10	1	27
aa	0	-1	105	2	0	0	0	0	0	1	0	162	0	C	4	0	0	0	0	_	-	_	0	0
invalid	3	1	9	1	0	1	1	1	30	3	1	7	0	2	1	1	2	2		-	0	(5	0
Sion																								
AA	685	732	376	692	742	745	744	746	755	659	748	275	755	742	669	741	716	744		723	742 7	752	746	755
Aa	53	13	313	50	13	-	7	0	0	85	~	375	0	C	46	5	0	0	-	23 (0	~	0	0
aa	1 5		د وو	15	0 4	0 -	0 -	0 -	0 4	7	0 4	104	0 4	0 01	1	0	0 4	0 4	0	0 -	0 1		0 -	0 4
Bacal	1		5	27)				2		5	,									2			
AA	982	1.057	516	766	1.033	1.064	1.060	1.080	1.027	955	482	379	1.047	1.064	1,004	1.073	1.007	1.073		1.024	.063	.047	1.079	475
Aa	82	22	426	69	18	3	1	0	0	122	-	522	0		75	2	0	0	4	20			0	6
аа	0	0	100	3	0	0	0	0	0	3	0	154	0	C	1	0	0	0	0	0	0	0	0	0
invalid	158	143	180	153	171	155	161	142	195	142	739	167	175	158	142	142	215	145		142	157]	166	143	738
Aarau																								
AA	790	841	411	781	833	844	844	849	854	758	854	288	855 8	850	776	843	850	849		792	349 8	354	846	817
Аа	60	6	368	68	22	9	9	1	1	91	1	417	0	C	69	~	0	0	1	22	_		0	38
aa 	0 1	0 1	76		0	0 1	0 1	0 1	0	5	0	150 î	0	0 1	5	0 1	0 1	0 1	0			_	0 0	0 0
invalid	Ð	5	0	ъ	0	ъ	5	5	0	4	0	0	0	0	×	5	5	2					6	0
																				Tab	le 3. coi	ntinue	д оп пе	xt page

	Blood g	roup syster	ц																				
	Luthe- ran	Luthe- ran	Luthe- ran	Kell	Kell	Kell	Kell	Diego	Wright (Cart- S wright a	Sci- I anna l	Jom- I prock h	Jom- I brock b	Jom- (rock t	Col- La on W	iener n	Dro- C ner m	ro- C	o- Knoj er	ps Kno	ps Kno	ps In- dian	Vel
Luzern AA Aa	2,514 197	2,661 58	1,333 1,147	2,495 2222 5	2,664 72	2,697 24	2,712	2,716	2,710	2,446 8 261 4	898 1	.,306 4	,724 2 t 1	,719 2	,494 2, 19 19	701 2	,715 2,	717 0	2,535 184	5 2,71 1	9 2,72 8	8 2,706 1	876 26
aa invalid	6 53	0 51	252 38	4 49	33	0 49	0	53	28 0	12 0) (1,868	156 (13 4	2 2	_ 0	4 50	- 0	5 0	30	1 50	0 50	0 34	0 61	$0 \\ 1,868$
Zurich AA Aa	22,013 1,678	23,287 440 5	11,766 9,773	21,953 2 1,693 5	23,237 527	23,628 66	23,591 : 74	36	23,120 2 9	21,075	14,681 8 98]	3,451 2 1,427 7	3,717 2	(3,713 2 3 1 3	1,971 23 ,705 20	,536 2 1 1	3,630 2 4 4	3,677 44	22,45 1,255	59 23,6) 36	84 23,6 115	80 23,7(3	2 14,753 26
aa invalid	338	326	312	362 2	190	0 364	393	323	929	324 9	9279 2	269 3	34 3	32 3	1 1 51 32	0 4	14 0	33 U	322	2 336	0 257	0 353	9,276
Lugano AA Aa aa invalid	718 43 0 7	745 12 0 11	322 335 105 6	698 5 56 1 4 0 10 7	749	758 0 10	754 1 0 13	753 0 15 15	728 1 39 39	574 30 3 3	380 2 385 5	669 7 882 C 112 C 66	62 7	09	91 75 1 4 0 4 7	1	53 7 0 5 1:	56 0 2	726 35 0	759 1 0 8	759 4 0	758 0 10	382 0 385
St. Gallen AA Aa aa invalid	1,361 99 14	1,435 27 0 14	745 596 124 11	1,349] 113 2 0 (14]	1,444 22)	1,460 1 0	1,453 8 0 15	1,460 1 0 (0	1,435 0 0 41	1,297 158 5 15	1,458 4 7 0 20 11 1	1 191 1 224 0 249 0 22 2	,447 1 0 0 1 0 1	,462 1 4 1	,347 1, 13 12 0 4 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,461 1, 0 0 4 1	460 1 5 0	1,395 65 1 15	5 1,46 0 14	2 1,45 7 0 11	8 1,454 0 22	. 1,404 60 12
Chur AA Aa aa invalid	1,343 76 20	1,398 24 0 19	636 628 161 16	1,301 1,301 1,10 1,10 1,10 1,10 1,10 1,1	1,396 33)	1,411 12 0 18	1,419 3 0 19	0 0 19 19	0 0 20	1,249 166 7 19	393 5 2 6 1,046 1	516 1 565 3 247 (0 .3 1	,426 1 ,426 1 0 0 0 0 2 1	,422 1	,318 1,4 00 7 1 15	415 1 1 0 0 2	,420 1, 2 2 0 2	417 1 0	1,360 60 2 19) 1,42 0 20 20	1 1,42 9 0 11	1 1,42 0 20	395 0 1,046
Total AA Aa aa invalid	33,997 2,518 42 696	35,913 686 7 647	17,951 15,226 3466 610	33,827 2,666 68 692	35,891 794 761	36,433 127 0 693	36,402 1117 0 734 0	36,563 42 1 647	35,845 3 16 3 0 1,392 0	32,509 2 3,959 1 143 (1 542 1	23,728] [58]] 53,367 5	.3,045 3 .7,675 1 5988 (0 545 6	(6,594 3 8 1 8 0 0 0 41 6	6,555 3 9 2 79 5	3,885 36 ,636 27 2 1 80 63	(349 3) 1 1 1 2 9 2 9	6,288 3 9 7 9 6 46 6	6,526 58 62 20	34,67 1,917 25 636	75 36,5 7 61 4 683	05 36,5 216 16 521	00 36,53 7 7 712	4 23,615 271 5 13,362
Overall	37,253	37,253	37,253	37,253 3	1.21	37,253	37,253	37,253	37,253	37,253	37,253 3	1,40 J	7,253 3	.04 1	.03 1. 7,253 37	,253 3	1 7,253 3	7,253	37,25	53 37,2	53 37,2	53 37,25	
^a Top to bottor latitude from ^v blood group sy Donor sample	n: Number West to Eau østem Knoj s not testec	s of freque st. Left to r ps) and are 1 for these	nt homo- ight: antig summing antigens a	(AA), he gens teste y up to a tre indica	tero- (<i>i</i> d, order total of ted as n	Aa), and red acco 326 (linu t.	rare hor rding to e 'rare hu	nozygot the ISB' ɔmo' of	es(aa) an F number total num	d invalid r of the r hers). C	l typings espectiv nly 23,8	for each e blood 86 and 2	l BTS, id group sy 23,848 bl	entified stem. D ood dor	by their J onors wit	cespectiv h rare bl : analyze	e head c ood gro d for Sc	luarter] up phei ianna rs	ocations, lotypes ar 56025238	ordered e under and Ve	l accord layed ir l rs5666	ing to ge gray (ex 29828, re	ıgraphical cluding spectively

Table 3. Continued

Fig. 1. Origin of blood donor samples and BTSs, identified by their headquarter locations (local language), participating in this project. The respective head quarter locations are given with their approximate geographical location and in their local languages. The area of each circle is correspondent to the number of samples investigated for each BTS (also see table 2). Approximately two-thirds of the analyzed blood donors (n = 24,058) were from the greater area of Zurich (blue circle), whereas the other third (n = 13,195) were from another 10 differ-

ent blood transfusion services distributed throughout Switzerland (red circles), summing up to a total of 37,253 individual blood donor samples investigated in the course of this project. Topographically, Swiss Alps are shown in dark grey. Lugano and Sion are located south and Chur within the Swiss Alps.

resenting a total of 50 blood group antigens, most of them described as HFAs or LFAs (table 1). Genotyping for Scianna (SC1/SC2, rs56025238) and Vel (Vel+/Vel-, rs566629828) only became available in a later revised version of the RARE module and after the description of the genetic background of Vel negativity [30]. Therefore, only 23,886 and 23,848 blood donors were analyzed for Scianna rs56025238 and Vel rs566629828, respectively. All other SNPs were analyzed on 37,253 DNA samples. Approximately two-thirds of the analyzed blood donors (n = 24,058) were from the greater area of Zurich, whereas the other third (n = 13,195) was provided by the other 10 BTSs (fig. 1, table 2). Approximately 84% of the Swiss population, e.g. 6.966 of the total 8.327 million inhabitants are covered by all 11 BTSs. Therefore, roughly 1 of every 200, or 37,253 of 8.327 million Swiss individuals were assessed by our approach.

Both multiplexes included additional assays, one each for gender determination, and three additional assays for the specific detection of *ABO* SNPs, located at coding nucleotide positions 261, 802 and 803. The respective assays served as quality control measure, e.g. to link DNA samples to their available donor phenotype data, thereby allowing for the exclusion of serial sample mistake. Comparison of ABO geno- and serotyping will be published elsewhere (manuscript in preparation). Calling failures, caused by samples with either a negative result for all SNPs or for only a single SNP assay failure, were excluded from the finally analyzed data set and ranged between 1.40% and 3.73% per assay (average 1.87%, median 1.78%; table 3, bottom line).

Rare Blood Donors Negative for HFAs and Homozygous Positivity for LFAs

The identified individuals with rare blood group antigen constellations had genotypes, known to encode for the blood group phenotypes Lu(a+b-) (n = 42), Lu(8-14+) (n = 7), K+k- (n = 68), Kp(a+b-) (n = 7), Di(a+b-) (n = 1), Yt(a-b+) (n = 143), Co(a-b+)(n = 52), LW(a-b+) (n = 1), Vel- (n = 5), summing up to a total of n = 326 (table 3). Knops blood group antigens are defined by clinically insignificant antibodies, but are notoriously difficult to identify [2]. Therefore, individuals with predicted phenotypes Kn(ab+) (n = 25), McC(a-b+) (n = 4), heterozygous for Vil+/- (n = 216) ,and homozygous for Vil+ (n = 16) are listed separately from the above. All donors beside those showing rare Knops phenotypes were reported to the Swiss Rare Donor File [31]. Successive samples of rare genotype carriers were used for serological confirmation of genotype. So far, the reinvestigated individuals with the following phenotypes were: Lu(a+b-) (n = 15 of 42), K+k- (n = 26 of 68), Kp(a+b-) (n = 2 of 7), Di(a+b-) (n = 1 of 1), Yt(a-b+) (n = 52 of 143), Co(a-b+) (n = 18 of 52).

Blood Group Allele Frequencies

Genotyping allowed for the identification of frequent and rare homozygous and heterozygous genotypes, the later in some cases not detectable by serologic testing. For instance, using standard serological methods, Vel positivity is undistinguishable in between VEL*01/ VEL*-01 heterozygotes and VEL*01/ VEL*01 homozygotes. On a molecular and statistical basis however, heterozygotes

	Blood group	system										
	Lutheran	Lutheran	Lutheran	Kell	Kell	Kell	Kell	Diego	Wright	Cartwright	Scianna	Dombrock
Rare allele c.nt position Rare nt. rs number MAF Zurich only MAF Swiss covered (weighted) Delta % ZH vs. Swiss	LU*01 230 A rs28399653 0.03659 0.03451 6 Blood group	LU*02.14 611 A rs28399656 0.00948 0.00930 2 system	LU*02.19 1615 G rs1135062 0.29872 0.30523 -3	KEL*01 578 T rs8176058 0.03783 0.03853 -2	KEL*02.03 841 T rs8176059 0.01125 0.01164 6	KEL*02.17 905 C rs61729034 0.00139 0.00196 -29	KEL*02.06 1790 C rs8176038 0.00156 0.00184 -15	D1*01 2561 T rs2285644 0.00080 0.00043 88	D1*02.03 1972 A rs75731670 0.00019 0.00028 -30	YT*02 1057 A rs1799805 0.05795 0.05796 0	SC*02 169 A rs56025238 0.00332 0.00298 11	D0*01 793 A rs11276 0.40458 0.40412 0
	Dombrock	Dombrock	Colton	Landst. Wiener	Cromer	Cromer	Cromer	Knops	Knops	Knops	Indian	Vel
Rare allele c.nt position Rare nt. rs number MAF Zurich only MAF Swiss covered (weighted) Delta % ZH vs. Swiss	DO*0204 323 T rs28362798 0.00023 0.00025 -6	DO*0105 350 T n.a. 0.00027 0.00025 111%	CO*02 134 T rs28362692 0.03790 -2%	LW*07 299 G rs77493670 0.00428 0.00321 33%	CROM*-01 679 C Ts60822373 0.00033 29%	CROM*01.03 155 T rs28371588 0.00008 0.00007 28%	CROM*01.04 155 C rs28371588 0.00093 0.00072 29%	KN*02 4681 A rs41274768 0.02728 0.02662 2%	KN*01.06 4768 G rs17047660 0.00084 0.00112 -25%	KN*01.07 4801 G rs17047661 0.00267 0.00405 -34%	IN*01 137 G rs369473842 0.00006 0.00013 -50%	VEL*-01 c.64-80del del 17 bp rs566629828 0.00108 0.00108 -89%

will be recognized and are much more frequent as compared to rare homozygotes. Therefore, genotyping data provided exact blood group allele frequency estimates. The MAF of all blood group SNPs from all BTSs are shown in supplementary table 3 (available at *http://content.karger.com/ProdukteDB/produkte.asp? doi=490714*). MAF data, separately calculated for the donor panel from the greater area of Zurich, and an average Swiss MAF, averaging data of all BTSs according to the number of inhabitants covered by the respective BTSs, are given in table 4.

The most common alleles are encoding the two public antigens of Do^a and Do^b (mean MAF of 0.40 (0.39, 0.42)) and Au^a and Au^b (MAF of 0.31 (0.29, 0.36)), followed by Yt^b (MAF 0.059 (0.052, 0.063)) with borderline frequency and by K with a clear LFA value (MAF of 0.039 (0.0338, 0.043)),. Alleles with very low frequency are encoding In^a (MAF 0.0001, (0.0007)) and Cr(a–) (MAF 0.0002 (0.0007)). In general, differences in allele frequencies can be observed for all analyzed blood group SNPs. These differences are more pronounced for some blood groups than for others.

Looking at the very rare alleles (MAF < 0.1%), a comparably high variability of (CV > 0.8) across cantons can be observed which may be linked to the fact, that for these even a small changes of MAF has a higher impact on overall frequency. All of the following predicted antigens, Jo(a–), McC^b, Wr^a, Hy–, Vel–, Tc^c, Di^a, are observed in some but not all cantons (table 3). For Vel+/Vel– we saw a correlation of R² < 0.7 between sample size and MAF, which explains the observed frequency differences across the cantons by differences in sample sizes. To some extent, this is also true for KEL11/17 with a Spearman correlation coefficient of 0.6. The highest variability across the more frequent rare blood group antigens (MAF > 1%) is seen for Kp^a and Kn^b followed by Lu^a.

Analysis of Inter-Cantonal Blood Group Variability

The PCoA analyses, both on the relative frequencies of the blood group antigens (fig. 2) and the F_{ST}, were performed to visualize frequency differences in the different cantons to facilitate their investigation (supplementary tables 4 and 5; available at http:// content.karger.com/ProdukteDB/produkte.asp?doi=490714). The F_{ST} is used to determine population differences because of genetic differentiation and is usually applied to SNP data. Figure 2 shows the four outlying cantons TI (headed in Lugano), GE (Geneva), VS (Sion), and AG (Aarau) (for abbreviations of canton names, their areas covered and location of headquarters see table 2). It was performed on 13 blood group antigens with mean MAF of 0.1% across the cohorts, e.g. Lu^a, Lu14 and Au^b, of the Lutheran system, K, Kp^a, Js^a and Kel17 of the Kell system, Kn^b, McC^b and Vil+ of the Knops system as well as on Yt^b, Co^b and Do^a (Do^a and Do^b antigens have 'public' allele frequency). Figure 3 shows the values of the F-Statistics in a heatmap for the blood groups with rare antigen frequencies of >0.1%. Overall F_{ST} were very low, ranging from 0.79×10^{-5} for the comparison between BL and BS (Basel) and AG (Aarau) to 80.8×10^{-5} for the comparison between VS (Sion) and TI (Lugano), showing that genetic population structures, as was to be expected, are very similar between the cantons. ZH (Zurich), NE (Neuchâtel), and VD (Lausanne) clustered together with NE at the

Table 4. Allele frequency data given for the minor allele of each SNP as minor allele frequency (MAF) for the greater area of Zurich or Switzerland^a

Fig. 2. PcoA analysis of the MAF using only blood group antigens with a minimal allele frequency of 0.1% or higher, across all head quarter locations of the participating BTS. Genetic blood group profiles of samples collected from BTSs headquartered in Sion, Lugano, Aarau, Geneva, and Chur cluster far away from the other Swiss regions investigated. Except for Aarau, this overlaps well with local languages spoken and geographical profiles of the other headquarters representative of the respective cantons (table 2). All but Sion, Geneva and Lugano are located in a region with a German language profile (beside some areas of Graubünden, with its capital Chur, and its inhabitants, still cultivating Raetho-Romanic language). Additionally, Lugano, Chur and Sion are clearly separated from the other areas investigated by the Swiss Alps, reaching maximal altitudes of up to 4,634 m above sea level in Switzerland (fig. 1).

center, with mean F_{ST} of 4.8×10^{-5} and $10.7\times10^{-5}.$ On the outposts are Lugano with a mean F_{ST} of $58.42\times10^{-5},$ Sion, Aarau, Chur and Geneva.

The differences between the cantons based on the antigen frequencies (here always the rarer of the alleles is analyzed) were mainly driven by Au^b (Geneva and Lugano), Kn^b, Vil+ (Geneva), and McC^b (fig. 3). After sample size correction using pairwise Fisher Exact Test, Au^b remains significantly associated with differences between the cantons (see supplementary table 6; available at *http://content.karger.com/ProdukteDB/produkte.asp?doi=490714*). For the Zurich samples, we had access to the ZIP codes of all donors. With this, we were able to classify them into probands living in extremely elevated (>1,500 m) and extremely low (<300 m) regions of the greater cantonal area of Zurich. For these samples, we tested for differences in antigen frequencies according to the altitude above sea level of the region of living with no significant results (data not shown). Of note, out of the total 24,058 samples analyzed, only 40 belonged to the 'extreme height' set.

Discussion

This country-wide search for rare blood group antigens was conducted to increase the pool of the Swiss rare blood donors and thus to improve the supply of rare blood units. In total 326 Swiss blood donors with rare or extremely rare blood group antigen constellations were identified. Thanks to this pool of rare blood donors, it will be possible to provide rare donor blood on demand, without the need for frozen stocks of respective erythrocytes. Once, the expected recognition of molecular specificities had been validated, the 'mission' could be accomplished without the need of commercially available typing sera, e.g. diagnostic antibodies, some of them directed against Au^b, Di^a, Co^b, Do^a, Js^a and SC2 notoriously being unobtainable [11, 12].

Molecular blood group typing also allowed for correct identification of heterozygotes for all antigens investigated, thereby delivering exact frequency data. Frequencies of certain antigens differed pronouncedly among different regions of Switzerland. Based on

the pairwise F-Statistics FST across all cantons. Larger values indicate a higher degree of genetic variation within the comparison. The row dendrogram shows two main clusters with comparisons for Geneva and Lugano and a third broader cluster comprised of comparisons made to Geneva. Aarau, Chur, and Sion. The main differences are driven by Au^{a/b} antigens, member of the Lutheran, and the Vil+/-, Kn^{a/b} and McC^{a/b} antigens of the Knops blood group system.

these results, targeted searches for certain rare phenotypes focused on regions with expected higher occurrence of the respective rare antigens are possible in the future. For instance, individuals negative for Vel were to be expected once among 2,025 inhabitants covered by BTS of Aarau, in comparison to one Vel- among 146,689 inhabitants, expected by Hardy-Weinberg proportions, of the Italian part of Switzerland and represented by the BTS headed in Lugano [24]. Of course, it is expected, that the same local antigen frequencies will be observed in the local patients. Thereby, such frequencies have important clinical implications, on one hand with respect to the expected occurrence of the respective antigens among patients and on the other hand, and as an indirect result, with respect to the prevalence of respective antibodies directed against them.

Previous genetic studies on the European population have revealed a substructure within Switzerland [32, 33]. Using a genomewide set of common markers, the existing 'language clusters' (fig. 4) were re-identified within Switzerland. These studies showed (again) that genetic distance varies with geographic distance and that language is an important barrier for reproduction. Geographically, TI (Lugano), and VS (Sion) are located south, whereas GR (Chur) lies within the massive mountain wall of the Swiss Alps (fig. 1). This 'wall' reaches maximal altitudes of up to 4634 m (peak Dufourspitze) above sea level. First inspections with respect to VEL*-01 allele prevalence, seemed to show that it is much rarer south than in the north of the Alps. However, the greater cantonal area of ZH (Zurich) north of the Alps proved this hypothesis statistically wrong, or alternatively, and purely speculative, suggested this region having predominantly been populated from the southern part of the Alps. Additionally, Switzerland also has a very distinct language profile with four spoken languages, French, German, Italian and Rhaeto-Romanic, also known as 'Romansch' (fig. 4) [34]. Of the analyzed cantons, GE, VD, NE, and some parts of JU and VS belong to the French, TI and some parts of GR to the Italian, and some parts mainly located in GR and partially in TI to the Rhaeto-Romanic speaking regions, whereas all other cantons are in regions

Fig. 4. Languages of Switzerland [34].

where the generally spoken language is German. This language profile may also be reflected in the ethnic and genetic background of the local blood donors investigated. The cantons BS and BL with their capitol of Basel, for instance, are both located close to France but have a German language profile and cluster between the cantons with German and French language profiles. GR with its capitol Chur and TI with its capitol Lugano both share Italian and Rhaeto-Romanic influences and cluster closest together.

However, frequency data need to be interpreted with caution. The rarer certain alleles are observed and the smaller respective donor panels are, the less reliable the frequency estimates might be calculated. For instance, the only Vel– allele carrier identified in the Italian-speaking part of Switzerland also typed phenotypically Vel– and was homozygous for VEL^*-01/VEL^*-01 . Thereby this individual represented a highly significant statistical outlier, without any further VEL^*01/VEL^*-01 heterozygotes among 383 other individuals investigated and donating blood in the area of Lugano. There is a chance that this individual is a retired Swiss citizen and 'refugee' from the cold winter climate of Aarau. Similarly, the only Di(a+b–) individual identified within all 37,235 donors investigated, turned out to be an immigrant from Peru.

Heterozygous SNP carriers may also represent an important resource for further scientific analysis of blood group antigen ge-

netics. In heterozygotes, each mutation affecting the allelic expression would become directly visible on the phenotypic level. Previously, the underlying principle had been used to identify K₀ alleles among apparently KEL*01/KEL*02 heterozygotes, but with a discrepant K+k- phenotype [6]. Accordingly, among the total of 2,518 apparently LU*A/LU*B heterozygotes identified in the course of this study, 500 were reinvestigated by serology. All showed a congruent Lu(a+b+) phenotype, suggesting a low frequency of ill expressed Lutheran alleles within Switzerland (data not shown, manuscript in preparation). In addition, the data set allowed for new observations with respect to allelic Lutheran haplotypes, For example, among the samples investigated, six LU*A homozygous samples were identified which also were proven to be homozygous for LU*19. Sequence analysis proved the existence of this new LU allele, now being recognized by the ISBT as LU*01.19 [4, 16].

The present study is an example for the magnitude of information delivered by applying high-throughput blood group genotyping. Gathered data provided new scientific insights into blood group genetics, completed allele frequency data for practical use, and delivered newly identified blood donors with rare and very rare antigen constellations, now available for the provision of rare donor blood.

Declaration of Financial Support

Financial support for this project was granted by the Humanitarian Foundation of the Swiss Red Cross (SRC, support: 47%), the Blood Transfusion Service Zurich, SRC (support: 33%), Switzerland, and with respect to funding, to smaller extents, by the Swiss blood transfusion umbrella organization Blutspende Schweiz, SRC, Bern, Switzerland, and Agena Bioscience GmbH, Hamburg, Germany. The presented technological approach represents a joint collaborative effort of the Blood Transfusion Service Zurich, and the company Agena Bioscience GmbH.

Author Contributions

N.T., K.N., Y.M., C.P., and S.S., performed experiments.

C.G., S.M., C.V., F.D., M.K., C.E, A.K. and J.G., performed experiments and analyzed data.

References

- 1 Woodfield G, Poole J, Nance ST, Daniels G: A review of the ISBT rare blood donor program. Immunohematology 2004;20:244–248.
- 2 Daniels G: Human Blood Groups, 3rd ed. Oxford, Blackwell, 2013.
- 3 Storry JR, Casthilho L, Chen Q, Daniels G, Denomme G, Flegel WA, et al: International society of blood transfusion working party on red cell immunogenetics and terminology: report of the Seoul and London meetings. ISBT Sci Ser 2016;11:118–122.
- 4 International Society of Blood Transfusion: Committee on Terminology for RBC Surface Antigens. 2018. www.isbtweb.org/working-parties/red-cell-immunogeneticsand-blood-group-terminology/blood-group-terminology/ blood-group-allele-terminology/. (last accessed June 27, 2018).
- 5 Meyer S, Vollmert C, Trost N, Bronnimann C, Gottschalk J, Buser A, et al: High-throughput Kell, Kidd, and Duffy matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry-based blood group genotyping of 4000 donors shows close to full concordance with serotyping and detects new alleles. Transfusion 2014;54:3198–3207.
- 6 Kormoczi GF, Wagner T, Jungbauer C, Vadon M, Ahrens N, Moll W, et al: Genetic diversity of KELnull and KELel: a nationwide Austrian survey. Transfusion 2007;47:703–714.
- 7 Onodera T, Kawai M, Obara K, Enomoto T, Sasaki K, Osabe T, et al: Silent KEL alleles identified from Japanese individuals with the Ko phenotype. Vox Sang 2018;113:290–296.
- 8 Boturao-Neto E, Yamamoto M, Chiba AK, Kimura EY, de Oliveira Mdo C, do Monte Barretto CL, et al: Molecular basis of KELnull phenotype in Brazilians. Transfus Med Hemother 2015;42:52–58.
- 9 Nance S, Scharberg EA, Thornton N, Yahalom V, Sareneva I, Lomas-Francis C: International rare donor panels: a review. Vox Sang 2016;110:209–218.
- 10 Svensson AM, Delaney M: Considerations of red blood cell molecular testing in transfusion medicine. Expert Rev Mol Diagn 2015;15:1455–1464.
- 11 Jungbauer C, Hobel CM, Schwartz DW, Mayr WR: High-throughput multiplex PCR genotyping for 35 red blood cell antigens in blood donors. Vox Sang 2012; 102:234–242.

- 12 van der Schoot CE, de Haas M, Engelfriet CP, Reesink HW, Panzer S, Jungbauer C, et al: Genotyping for red blood cell polymorphisms. Vox Sang 2009;96:167–179.
- 13 Gassner C, Meyer S, Frey BM, Vollmert C: Matrixassisted laser desorption/ionisation, time-of-flight mass spectrometry-based blood group genotyping – the alternative approach. Transfus Med Rev 2013;27:2–9.
- 14 Meyer S, Sigurdardottir S, Engström C, Zorbas-Nikos A, Frey B, Gassner C: A rare KEL*02.17 | KEL*02N.06 (IVS3 + 1g>a) compound heterozygous individual, prone to anti-KEL11 immunization. Transfus Med Hemother 2012;39(suppl 1):65.
- 15 Hegemann I, Jaquet P, Furrer M, Frey BM: Genotypic and Phenotypic characterization of Dombrock (Do) blood group antigens in blood donors. Transfus Med Hemother 2006;33(suppl 1):46.
- 16 Trost N, Meyer S, Vollmert C, Gottschalk J, Ries J, Markovic A, et al: MALDI-TOF MS based BCAM genotyping on 37,234 Swiss proves two new Lutheran blood group alleles, both positive for Aub specific 1,615G. Vox Sang 2016;111(suppl 1):5A-S30-05 (abstract).
- 17 Wagner FF, Poole J, Flegel WA: Scianna antigens including Rd are expressed by ERMAP. Blood 2003;101: 752–757.
- 18 Hermand P, Gane P, Mattei MG, Sistonen P, Cartron JP, Bailly P: Molecular basis and expression of the LWa/LWb blood group polymorphism. Blood 1995;86: 1590–1594.
- 19 Moulds JM, Zimmerman PA, Doumbo OK, Kassambara L, Sagara I, Diallo DA, et al: Molecular identification of Knops blood group polymorphisms found in long homologous region D of complement receptor 1. Blood 2001;97:2879–2885.
- 20 Agre P, Smith BL, Baumgarten R, Preston GM, Pressman E, Wilson P, et al: Human red cell Aquaporin CHIP. II. Expression during normal fetal development and in a novel form of congenital dyserythropoietic anemia. investigation Clin Invest 1994;94:1050–1058.
- 21 Telen MJ, Rao N, Udani M, Thompson ES, Kaufman RM, Lublin DM: Molecular mapping of the Cromer blood group Cra and Tca epitopes of decay accelerating factor: toward the use of recombinant antigens in immunohematology. Blood 1994;84:3205–3211.

S. AelD., S.WA., C.T., JD.T., SM.M., A.S., JD.B., M.S., L.I., A. B., J.S., B.W.,

D.C., MC.B, J.T., S.H. and T.S., contributed essential material and collected data. C.G., S.M., C.V., BM.F, F.D., M.K., A.F. discussed the results and commented on the manuscript.

- C.G., S.M., C.V. and BM.F. designed the study.
- C.G. and S.M. supervised the study.
- C.G., F.D. and BM.F. wrote the manuscript.
- C.G. and F.D made the tables and figures.
- All authors revised and edited the manuscript.

Disclosure Statement

Christoph Gassner is an employee of the Blood Transfusion Service Zurich, SRC, and acts as a consultant for inno-train GmbH, Kronberg i.T., Germany. Caren Vollmert is employed at Agena Bioscience GmbH, Hamburg, Germany. All other authors do not disclose any competing interests.

- 22 SCARF: Serum, Cells & Rare Fluids Exchange. 2018. http://scarfex.jove.prohosting.com/exchange.html (last accessed June 27, 2018).
- 23 Schweizerische Eidgenossenschaft, Bundesamt-für-Statistik: Die Bevölkerung der Schweiz 2015. 2018. www.bfs.admin.ch/bfs/de/home/statistiken/katalogedatenbanken/publikationen.assetdetail.1401562.html (last accessed June 27, 2018).
- 24 Hardy GH: Mendelian proportions in a mixed population. Science 1908;28:49–50.
- 25 Spearman C: The proof and measurement of association between two things. By C. Spearman, 1904. Am J Psychol 1987;100:441-471.
- 26 Wright S: The genetical structure of populations. Ann Eugen 1951;15:323–354.
- 27 Defays S: An efficient algorithm for a complete link method. Computer J 1977;20:364–366.
- 28 Moskvina V, Smith M, Ivanov D, Blackwood D, StClair D, Hultman C, et al:. Genetic differences between five European populations. Hum Hered 2010; 70:141–149.
- 29 Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Stat Soc B 1995;Series B:289–300.
- 30 Storry JR, Joud M, Christophersen MK, Thuresson B, Akerstrom B, Sojka BN, et al: Homozygosity for a null allele of SMIM1 defines the Vel-negative blood group phenotype. Nat Genet 2013;45:537–541.
- 31 Hustinx H, Blutspende Schweiz: Rare Donors Seltene Spender – Rare donneurs. 2018. www.iblutspende.ch/en/ rare-donors/rare-donors.html (last accessed June 27, 2018).
- 32 Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, et al: Genes mirror geography within Europe. Nature 2008;456:98–101.
- 33 Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S, Caliebe A, et al: Correlation between genetic and geographic structure in Europe. Curr Biol 2008;18:1241– 1248.
- 34 Schweizerische Eidgenossenschaft: Statistischer Atlas der Schweiz, Vorherrschende Landessprachen in den Gemeinden, 2000. 2018. www.atlas.bfs.admin.ch/maps/ 13/de/12957_3072_104_70/21290.html (last accessed June 27, 2018).