MNS antigen Mg exclusively appears as 68C>A mutant of GYPA*02 (N) within the Zurich area of Switzerland

Sonja Sigurdardottir, Stefan Meyer, Claudia Portmann, Beat M. Frey, Christoph Gassner

Blood Transfusion Service Zurich, SRC, Department of Molecular Diagnostics (MOC), Zürich-Schlieren, Switzerland.

Background

The human MNSs blood group system is encoded by the genes GYPA and GYPB and is considered as second in complexity to Rh. Mg, encoded by GYPA*11, is a low-frequency antigen located on GYPA. It has repeatedly been described to have a GYP(A-B-A) hybrid structure with a C>A substitution at coding nucleotide (cdnt) 68. Dating back to the 1960ies, Mg had been reported to be found on both GYPA alleles, i.e. M and N, in both cases with virtually undetectable expression of M, or N. (Figure 1).

Methods

MALDI-TOF MS based blood group MNSs genotyping interrogated cdnt 59C>T of *GYPA* for MN, and cdnt 143T>C of *GYPB* for Ss phenotype predictions. ^{1,2} All genotyping results were compared to MNSs phenotypes, obtained by standardserological methods. All *GYPA*11* positive samples were identified by original discrepancy of genotype versus existent phenotype, and repetition of genotyping using a commercially available PCR-SSP based method, including testing for *GYPA*11* (inno-train GmbH, Kronberg i.T., Germany). All *GYPA*11* positive samples and two individuals each of MMSS, MMss, NNSS, and NNss phenotypes were sequenced for *GYPA* from intron 1 (102 bp), across exon 2 and intron 2 (335 bp).

BLUTSPENDE SRK

ZÜRICH

exons (<i>GYP</i>	A)	Ex	on	1,	37	bp								Exc	on	2, 9	99	bp											
GypA nascent aa count		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		20	21	22	23	24	25	26	27
GypA cleav	ed aa count																					1	2	3	4	5	6	7	8
Μ	GYPA *01	М	Y	G	К	Ι	Ι	F	V	L	L	L	S	А	I	V	S	Ι	S	A	ſ	S	S	т	т	G	V	A	Μ
Ν	GYPA *02	М	Y	G	Κ	Ι	Ι	F	V	L	L	L	S	Ε	I	V	S	I	S	А		L	S	Т	Т	Ε	V	A	Μ
Mg (on N)	GYPA*11	Μ	Y	G	Κ	I	I	F	V	L	L	L	S	Ε	I	V	S	Ι	S	А		L	S	Т	Ν	Ε	V	A	Μ
S	GYPB*03	М	Y	G	K	I	Ι	F	V	L	L	L	S	Е	I	V	S	Ι	S	А		L	S	т	Т	Ε	V	A	Μ
S	GYPB*04	Μ	Y	G	Κ	Ι	Ι	F	V	L	L	L	S	E	I	V	S	I	S	А		L	S	Т	Т	Е	V	A	Μ
		Le	ad	ers	Sec	que	nc	e (clea	ave	ed f	froi	n r	าลร	ceı	ntp	pep	otic	de)										

Figure 1: Amino-terminal <u>peptide sequences</u> of GypA (blue boxed cells including M/N amino-acid (aa) exchanges) and GypB (S/s aa exchange not comprised in figure), first 27 aa of nascent, 8 aa of mature peptides. Of note, identity of GypB (red boxes) to N of GypA. Predicted peptide sequence of Mg, e.g. specific p.Thr23Asn substitution (black cell), located on N of GypA.

Results

MALDI-TOF MS based MN genotyping of 11.240 blood donors of the Zurich area in Switzerland delivered seven cases with M+N- serology, but a preliminary *GYPA*01/02* (MN) genotype. All genotype repetitions delivered final *GYPA*01/11* heterozygous results. Alignments of the investigated sequence did not show any *GYPB* specific nucleotides on *GYPA*11* and exactly corresponded to the *GYPA*02* (N) allele, beside its specific cdnt 68C>A point mutation (**Figure 2**). *GYPA*11* allele frequency was calculated to be 0.136%. Consequently, the

expected overall frequency of Mg positive individuals is one among 368 in the Zurich area of Switzerland.

Aims

Mg is very rare, with higher incidences only reported for Swiss and Sicilians, reaching up to one Mg positive individual among 600. A number of seven available *GYPA*11* positive cases prompted us to (re)investigate Mg and its molecular background in detail.

									intr	on 1	exon 2					i	ntro	on 2	•					
			-153	-152	-137	-118	-83	-67	-66	-50	38	59	68	71	72		41	42	54	60	149	155	156	167
reference	GYPA* 01	М	А	Т	С	С	-	С	А	С	С	С	С	G	Т		С	A	Т	-	С	Т	G	т
in house	GYPA* 01	М	А	Т	С	С	-	С	А	С	С	С	С	G	Т		С	А	Т	-	Ν	Ν	Ν	Ν
in house	GYPA* 02	Ν	Α	Т	С	С	-	С	А	С	С	Т	С	А	G		С	А	Т	-	С	Т	G	Т
in house	GYPA* 11	Mg	А	Т	С	С	-	С	А	С	С	Т	Α	А	G		С	A	Т	-	С	Т	G	Т
in house	GYPA* 11	Mg	Α	Т	С	С	-	С	А	С	С	Т	Α	А	G		С	А	Т	-	С	Т	G	Т
reference	GYPB* 04	S	G	С	G	Т	А	т	G	Т	А	Т	С	А			G	А	С	Т	Т	С	А	А
in house	GYPB* 03	S	G	С	G	Т	Α	Т	G	Т	А	Т	С	А			G	А	С	Т	Т	С	А	А
in house	GYPB* 04	S	G	С	G	Т	А	Т	G	Ν	А	Т	С	А			G	А	С	Т	Т	С	А	А
reference	GYPE* n.a.	n.a.	А	С	G	С	-	Т	G	С	G	С	С	G			С	G	С	Т	С	С	А	Т
in house	GYPE* n.a.	n.a.	А	С	G	Ν	-	Т	G	С	Ν	С	С	G			С	G	C	Т	С	С	А	Т
in house	GYPE* n.a.	n.a.	A	С	-	Ν	-	Т	G	С	A	С	С	G			С	G	С	Т	Ν	С	A	Т

Figure 2: Polymorphisms in between *GYPA*, *B*, and *E* exon 2 and adjacent intronic **nucleotide sequences**, in blue, red and grey, respectively. Each *GYP* gene is represented by one publically retrieved (NCBI) and two in house reference sequences (from MMSS and NNss phenotype homozygotes). Lines *GYPA*11* (Mg) display sequences derived from the "serologically un-expressed *GYPA*02* allele" of two samples, later confirmed in all seven discrepant samples. Mg-specific mutation 68C>A (black). There is no evidence for Mg arising from a *GYP(A-B-A)* hybrid.

Summary

Molecular analysis of seven *GYPA*11* (Mg) positive individuals did not deliver any evidences for Mg being encoded by an M-allele. Controversially to reports of Mg, supposedly having a *GYP(A-B-A)* hybrid structure, results rather suggested presence of a simple point mutation instead. *GYP*11*, common in Switzerland, seems to be a derivative of *GYPA*02* (N) with a simple 1 bp substitution at cdnt 68C>A.

1: Meyer S, Vollmert C, Trost N, et al. MNSs genotyping by MALDI-TOF MS shows high concordance with serology, allows gene copy number testing and reveals new St(a) alleles. Br J Haematol. 2016 Aug;174(4):624-36.

2: Meyer S, Trost N, Frey BM, Gassner C. Parallel donor genotyping for 46 selected blood group and 4 human platelet antigens using high-throughput MALDI-TOF mass spectrometry. Methods Mol Biol. 2015;1310:51-70.

Swisstransfusion September 07. & 08. 2017, Fribourg, Switzerland