BLACK AFRICAN VS+ ANTIGEN IS DEFINED BY C733 AND MAY CROSS-REACT WITH RHCE*E/e GENOTYPE

Stefan Meyer¹, Nadine Trost¹, Caren Vollmert², Jochen Gottschalk¹, Beat M. Frey¹, Christoph Gassner¹

¹ Blood Transfusion Service Zurich, SRC, Department of Molecular Diagnostics (MOC), Schlieren, Switzerland ² Sequenom GmbH, Hamburg, Germany

www.blutspendezurich.ch

BLUTSPENDE ZÜRICH

Background

Genotyping for the antigens RhE and Rhe requires specific discrimination of Cytosine (C) versus Guanosine (G) at coding nucleotide 676 in exon 5 of the *RHCE* gene, respectively. Additional discrimination is mandatory for all *RHCE*E/e* genotyping approaches in order to exclude detection of G676 in the highly homologous *RHD* gene. This can be achieved by exclusive amplification of *RHCE*, "anchored" on at least one nucleotide specific for *RHCE* and discriminating *RHD*. However, "anchors" need to be selected carefully, in order to avoid unwanted typing errors, as exemplified here by the variant *RHCE* alleles with a weakened Rhe phenotype and VS positivity, encoded by 733C>G.

Methods

RHCE specific amplification was "anchored" on the two "Caucasian" *RHCE* specific nucleotides G667 and C733, followed by C (*RHCE*E*) versus G (*RHCE*e*) typing at position 676 by single base extension and Matrix-Assisted Laser Desorption/Ionisation, Time-of-Flight Mass Spectrometry (MALDI-TOF MS) analysis. Genotyping of 5,347 blood donors of the Zurich area of Switzerland with known RhE/e phenotypes was done (standard serological techniques). Discrepancies were investigated by PCR-SSP (Inno-Train, Kronberg i.T, Germany) and DNA sequencing.

RH genes / alleles	alleles exon 1				exon 5								exon 6		exon 7			
		48	106	340	667	676	697	712	733	744	748	787	800	916	932	941	1006	1025
RHD		G	G	С	Т	G	G	G	G	С	G	G	А	G	А	G	G	Т
RHCE*C		С	G	С	G		С	А	С	Т	G	А	Т	А	G	Т	G	С
RHCE*c		G	G	С	G		С	А	С	Т	G	А	Т	А	G	Т	G	С
RHCE*E			G	С	G	С	С	А	С	Т	G	А	Т	А	G	Т	G	С
RHCE*e			G	С	G	G	С	А	С	Т	G	А	Т	А	G	Т	G	С
					_									_				
sample ID p	ohenotp.	res.	MAL	DI	resul	ts of <i>I</i>	RHCE	speci	fic sequ	iencin	in o	exon	5	res. MAL	.DI	res.	MAL	DI
sample ID p MU-00063	ohenotp. ccDDEe	res.	MAL n.a.	DI n.a.	resul G	ts of <i>F</i> G/C	RHCE C	speci A	fic sequ	iencin T/C	ig in G	exon A	5 T	res. MAL AG (2D)	.DI n.a.	res. n.a.	MAL G	DI n.a.
sample ID p MU-00063 MO-00067	ohenotp. ccDDEe ccDDEe	res. G/C G	MAL n.a. n.a.	DI n.a. n.a.	resul G G	ts of <i>F</i> G/C G/C	RHCE C C	speci A A	fic sequ G/C G/C	iencin T/C T	g in G G	exon A A	5 T T	res. MAL AG (2D) AG (2D)	.DI n.a. n.a.	res. n.a. n.a.	MAL G G	DI n.a. n.a.
sample ID p MU-00063 MO-00067 MO-00068 MO-00068	ohenotp. ccDDEe ccDDEe ccDDEe	res. G/C G G/C	MAL n.a. n.a. n.a.	DI n.a. n.a. n.a.	resul G G G	ts of <i>F</i> G/C G/C G/C	RHCE C C C	Speci A A A	fic sequ G/C G/C G/C	Iencin T/C T T	g in G G G	exon A A A	5 T T T	res. MAL AG (2D) AG (2D) AG (2D)	.DI n.a. n.a. n.a.	res. n.a. n.a. n.a.	MAL G G G	DI n.a. n.a. n.a.
sample ID p MU-00063 MO-00067 MO-00068 MO-00069	bhenotp. ccDDEe ccDDEe ccDDEe ccDDEe	res. G/C G/C G/C	MAL n.a. n.a. n.a.	DI n.a. n.a. n.a. n.a.	resul G G G G	ts of <i>F</i> G/C G/C G/C G/C	RHCE C C C C	speci A A A A	fic sequ G/C G/C G/C G/C	Iencin T/C T T T	g in G G G G	A A A A A	5 T T T T	res. MAL AG (2D) AG (2D) AG (2D) AG (2D)	DI n.a. n.a. n.a. n.a.	res. n.a. n.a. n.a. n.a.	MAL G G G G	DI n.a. n.a. n.a. n.a.
sample ID p MU-00063 MO-00067 MO-00068 MO-00069	ohenotp. ccDDEe ccDDEe ccDDEe ccDDEe	res. G/C G/C G	MAL n.a. n.a. n.a.	DI n.a. n.a. n.a. n.a.	resul G G G	ts of <i>F</i> G/C G/C G/C	RHCE C C C	speci A A A A	fic sequ G/C G/C G/C G/C	Iencin T/C T T T	g in G G G G	exon A A A A	5 T T T T	res. MAL AG (2D) AG (2D) AG (2D) AG (2D)	DI n.a. n.a. n.a. n.a.	res. n.a. n.a. n.a.	MAL G G G	DI n.a. n.a. n.a. n.a.
sample ID p MU-00063 MO-00067 MO-00068 MO-00069 described RHCE*01.20 allele	ccDDEe ccDDEe ccDDEe ccDDEe ccDDEe	res. G/C G/C G	MAL n.a. n.a. n.a.	DI n.a. n.a. n.a. n.a.	resul G G G	ts of <i>F</i> G/C G/C G/C	RHCE C C C	speci A A A A	fic sequ G/C G/C G/C G/C	Iencin T/C T T T	g in d G G G	exon A A A A	5 T T T T	res. MAL AG (2D) AG (2D) AG (2D) AG (2D)	DI n.a. n.a. n.a.	res. n.a. n.a. n.a.	MAL G G G	DI n.a. n.a. n.a.

Fig.1: Nucleotide changes

characteristic for all various *RH* alleles, results of the 4 samples analyzed, and specificities of all *RHCE*01.20* alleles described so far.

RHCE*01.20.01					G					
RHCE*01.20.02	С				G					
RHCE*01.20.03	С				G				Т	
(RHCE*01.20.04)	С				G				-	Т
RHCE*01.20.05					G				Т	
RHCE*01.20.06	С		G		G					
RHCE*01.20.07	Т				G					
RHCE*01.20.08	С				G		А			
RHCE*01.22		Т	G	G	G	С	G	А		
RHCE*02.04		Т	G	G	G	С	G	А		
RHCE ce(W16C,A36T,L245V)(CX,VS)	C A				G					
Rhce ces744					G	С				
Döscher et al		Т	G	G	G	С	G			

Fig.2: Statistical diagram of correct and erroneous typing for *RHCE*E/e* using C733 as anchor for specific *RHCE* amplification.

Results

Concordant genotyping results were found for 4,047 Rhee, 1,093 RhEe and 203 RhEE phenotypes, respectively (correct: 5,343 of 5,347 = 99,925%). Four samples with ccDEe phenotype however, displayed discrepant *RHCE*EE* genotypes ("erroneous": 4 of 5,347 = 0,075%) using G667 and C733 specific *RHCE*-amplification followed by single base extension and MALDI-TOF MS. PCR-SSP analysis, anchored on C, or G 676 and A787, respectively, resulted in phenotype-concordant *RHCE*Ee* genotypes in all 4 cases. *RHCE* specific sequencing of exons 5 and 3 of the discrepant samples identified three *RHCE*01.20.01*, one of which with an additional C744, and one *RHCE*01.20.02*, or *RHCE*01.20.04*. All alleles are known to encode positivity for the antigen VS.

Conclusion

As expected among the large study group investigated, *RHCE*01.20* alleles were encountered and delivered "erroneous" *RHCE*e* negative results in samples of non-Caucasian ethnicity. Using different anchors for *RHCE*-specific amplification could avoid this problem, but may result in other discordant results, caused by the pleiority of other variant *RHCE*-alleles. However, considering the high frequency of VS positivity among Africans, C733 seems of limited qualification as anchor for *RHCE*E/e* genotyping.

Swisstransfusion Jahreskongress 2014, Luzern, Switzerland