A RARE *KEL*02.*17 | *KEL*02N.06(*IVS3+1g>a) COMPOUND HETEROZYGOUS INDIVIDUAL, PRONE TO ANTI-KEL11 IMMUNIZATION

S. Meyer, S. Sigurdardottir, C. Engström, A. Zorbas-Nikos, B.M. Frey, C. Gassner

Blutspende Zürich, Rütistrasse 19, 8952 Schlieren/Zürich www.blutspendezurich.ch

BLUTSPENDE ZÜRICH

Background

The Kell blood group system includes some of the most immunogenic antigens among blood groups. Beside the well-known antigens Kell(*KEL*01*), Kp^a(*KEL*03*), and Js^a(*KEL*06*), the antithetic antigens KEL11/17 further contribute to this list. However, KEL17 is considered as very rare, with an approximate frequency of one *KEL*02.17* homozygote among 30'000 Europeans only¹. We recently observed an individual with a rare anti-K11 and describe here its unusual molecular mechanism of anti-K11 sensitization.

Methode

Standard serological methods for antigen- and antibody-detection and specification were used. *KEL* genotyping was performed using a commercially available test kit "*KEL*plus" (Inno-Train, Germany) and in house *KEL*11/17 PCR-using Sequence Specific Priming technique (SSP) and *KEL* gene sequencing.

Results

By standard serological investigation, a 73 year old female was found positive for anti-KEL11 in her serum. Reasoned by the rarity of this observation, molecular confirmation was intended. A *KEL*11/17 PCR-SSP was performed, but resulted in an unexpected heterozygosity for *KEL*11/17. Further "*KEL*plus" typing delivered *KEL*-1,2,-3,4,-6,7 (K, Kp^a, Js^a negative), and surprisingly *KEL*02.06(IVS3+1g>a)*, for the investigated DNA. Finally, *KEL* gene sequencing of exon areas 3 and 8 confirmed the unusual *KEL* genotype of the patient:

Compound heterozygosity for an expressed KEL*02.17 and an unexpressed KEL*02N.06(IVS3+1g>a).

Conclusion

 $KEL^{*02.06}(IVS3+1g>a)$ is the most frequent unexpressed KEL allele, encoding $Kell_0$, when present in homozygous, or compound heterozygous form². However, in inherited hemizygousity this KEL_0 allele will allow the second KEL allele to behave as seemingly homozygous, when expressed, as observed in our *case*. Such individuals might be expected at a frequency of 1 among 520'000 Europeans, only. Since this is the second observation of an anti-KEL11, beside another with true homozygosity for KEL*02.17, we assume elevated frequency of KEL17 in the Zurich area as compared to other European areas.

References

Daniels G (2002) Human Blood Groups, 2nd edn. Blackwell Science, Oxford.
Körmöczi GF, et al. (2007) Genetic diversity of KELnull and KELel: a nationwide Austrian survey. Transfusion. 47:703-714.

45. Jahreskongress der Deutschen Gesellschaft für Transfusionsmedizin und Immunhämatologie (DGTI), 11. - 14. September 2012, Graz, Austria